
m denotes Lebesgue measure on R. In some problems it denotes Lebesgue
measure on Rn.
Problem 1

Given f 2 C([0;1)) such that f(x)! 0 as x!1 show that for any � > 0
there is a polynomial p such that jf(x)� e�xp(x)j < � 8x 2 [0;1):

[See also problem 109 below]
We give two proofs:

1. Let g(x) = f(� log(x)); 0 < x � 1 and g(0) = 0: By Weierstrauss
Approximation Theorem we can �nd a polynomial q such that jg(x)� q(x)j <
�=2 for 0 � x � 1: Note that the constant term c0 in q satis�es the inequality
jc0j < �=2: If q1 = q � c0 then jg(x)� q1(x)j < � for 0 � x � 1: We can

write q1(x) as
NX
j=1

cjx
j : We now have the inequality

������f(x)�
NX
j=1

cje
�jx

������ < �

for all x � 0: From this we conclude that if the result holds for the functions
f(x) = e�jx; j 2 N then it holds for the given function f: We now prove the
result for these functions using induction on j:
For j = 1 we take p = 1: Suppose

��e�jx � e�xp(x)�� < � 8x 2 [0;1) for
some polynomial p: Then

���e�(j+1)x � e�(1+ 1
j )xp( 1+jj x)

��� < � 8x 2 [0;1): it

su¢ ces to show that
���e�x�(x)p( 1+jj x)� e�(1+

1
j )xp( 1+jj x)

��� < � 8x 2 [0;1) for

some polynomial �: Let �(x) =
2NX
k=0

(�x=j)k
k! where N is a positive integer to be

speci�ed. We �rst note thatM � supf
���e�(1� 1

j )xp( 1+jj x)
��� : x � 0g <1 if j > 1:

This is also true for j = 1 because p(x) � 1 in this case.
Thus

���e�x�(x)p( 1+jj x)� e�(1+
1
j )xp( 1+jj x)

��� � Me�x=j
��� (�x=j)2N(2N)!

��� : Here we
use that fact that

2N�1X
k=0

(�x=j)k
k! � e�x=j �

2NX
k=0

(�x=j)k
k! and hence

��e�x=j � �(x)�� ���� (�x=j)2N(2N)!

��� : The last expression attains its maximum at the point x = 2jN and

the maximum value isMe�2N (2N)2N

(2N)! : By Stirling�s Formula [lim
(2N)!

e�2N (2N)2N+1=2 =p
2�] we see that desired inequality holds if N is su¢ ciently large.

Manjunath Krishnapur�s solution:

Consider the Banach space of all continuous functions on [0;1) vanishing at
1 with the supremum norm. We have to show that the subspace fe�xp(x) : p
is a polynomialg is dense in this space. If not, then there is a continuous
linear functional which vanishes on this subspace but not everywhere. By Riesz

Representation Theorem there is a real measure � such that
Z
e�xp(x)d�(x) = 0
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for every p but � 6= 0: Writing � as �1 � �2 where �1 and �2 are positive �nite
measures we have

Z
e�xp(x)d�1(x) =

Z
e�xp(x)d�2(x): Let d�1 = e�xd�1 and

d�2 = e�xd�2: Then
Z
p(x)d�1(x) =

Z
p(x)d�2(x) for every polynomial p but

�1 6= �2: Let �j(z) =
Z
eztd�j(t); j = 1; 2: These functions are holomorphic in

fRe z < 1g: Also �(n)1 (0) = �
(n)
2 (0) 8n � 0: From the power series expansion

of these two function in fz : jzj < 1g it follows that they coincide on this ball,
hence on fRe z < 1g: In particular they coincide on the imaginary axis which
means

Z
eistd�1(t) =

Z
eistd�2(t) 8s 2 R: This is a contradiction.

Problem 2

If K is a compact subset of Rn show that the set A = fx 2 Rn : d(x;K) = 1g
has Lebesgue mesure 0:
We �rst show that if K � B(0; 13 ) then x 2 A ) tx =2 A for any t 2

(0;1)nf1g. Using polar coordinates (c.f. Real and Complex Analysis by Walter
Rudin, 3rd Edition, Problem 6, Chapter 8) we conclude from this that A has
measure 0: By translation the same conclusion holds if K is contained in some
open ball of radius 13 : The general case is handled by noting that K is the union
of a �nite number of compact subsets of diameter not exceeding 1

3 and any point
in A has distance 1 from one of these subsets.
Let K � B(0; 13 ); d(x;K) = 1 and 0 < t < 1: Let y 2 K with kx� yk = 1:

Then ktx� yk2�kx� yk2 = ktx� xk2+2 < tx�x; x�y >= ktx� xk2+2(t�
1) kxk2�2 < tx�x; y >= (t2�1) kxk2+2(1�t) kxk kyk : Now note that kyk < 1

3

and kxk > 1 � 1
3 =

2
3 : Hence ktx� yk

2 � kx� yk2 < 0 proving that tx =2 A:

Similarly if t > 1 then ktx� yk2�kx� yk2 = (t2� 1) kxk2+2(1� t) kxk kyk >
2
3 (t

2 � 1)� 2(t� 1) 13 > 0 so tx =2 A: This completes the proof.

Problem 3
If fn ! 0 a.e. on a �nite measure space (
;F ; �) show that there is a

sequence fang " 1 such that anfn ! 0 a.e.

Solution:
May suppose fn � 0 8n: Using fn

1+fn
we see that we may suppose 0 � fn � 1:

Using supffn; fn+1; fn+2; :::g we may suppose fn # 0: By Egoro¤�s Theorem
we can �nd a set Ek such that �(Eck) <

1
2k
and integers nk " 1 such that

0 � fn < 1
2k
on Ek for n � nk: Let an = 2k=2 for nk < n � nk+1: For

nk < n � nk+1; anfn � 2k=2fnk < 2�k=2 on Ek: Now
1X
k=1

�(Ek) <1 so almost

all points belong to Ek for all k su¢ ciently large.

Problem 4

2



Let x1; x2 2 R2: If A � R2 has positive Lebesgue measure show that there
exists y 2 R2 and t 2 Rnf0g such that y + tx1 and y + tx2 both belong to A:

More generally if F is a �nite subset of Rn and m(A) > 0 then there exists
y 2 R2 and t 2 Rnf0g such that y + tx belongs to A for all x 2 F:
Solution: if x1 = x2 we can take any point u in A and take y = u�x1; t = 1:

Let x1 6= x2: Let T be a rotation of R2 such that T (x1 � x2) = �e1 where
� = kx1 � x2k and e1 = (1; 0): Let B = T (A): Not all the sections of Bs are all
singletons. [Bs = ft : (t; s) 2 B] because B has positive measure. If (t1; s) and
(t2; s) 2 B with t1 6= t2 then 9w1; w2 2 A with T (w1) = (t1; s); T (w2) = (t2; s)
so w1 �w2 = (t1 � t2)T�1(e1) = 1

� (t1 � t2)(x1 � x2): Hence w1 �
1
� (x1 � x2) =

w2� 1
� (x1�x2): Now take s =

1
� (t1�t2) and y = w1�sx1: Then y+sx1 = w1 2 A

and y + sx2 = w1 + s(x2 � x1) = w1 + (w2 � w1) = w2 2 A; as required.

[ A result if Steinhaus in Fund. Mathematica, 1920 says that if A has positive
measure in Rn and F is any �nite subset of Rn then we can �nd c 2 Rn and
t 2 R such that c + tx 2 A for any x 2 F: A special case of this (obtained by
taking n = 1 and F to be f1; 2; 3g is the following: if A is a measurable subset
of R and if a 2 A; b 2 A; a 6= b ) a+b

2 6= A then A has measure 0: Is there a
simple proof of this?].

Problem 5
If A and B are subsets of R of positive measure show that A + B contains

an open interval.

Solution: w.o.l.g. assume that the sets are bounded. IA � IB is continuous
and positive at some point, hence positive in some interval.

Problem 6
If A is a measurable subset of R such that a 2 A; b 2 B; a 6= b ) a+b

2 =2 A
then A has measure 0:
Remark: let A be the set of all numbers in (0; 1) whose expansion to base 4

has all coe¢ cients in f0; 1g: Then A has the property stated here.

Proof: w.l.o.g. A is bounded. Let � = m(A): Let f be a continuous function :

R! R such that
Z
jIA � f j < �=7: Then

Z
jIA(x)IA(x+ t)IA(x� t)� f(x)f(x+ t)f(x� t)j dx <

3�
7 and

IA(x)IA(x+t)IA(x�t) = 0 8x if t 6= 0:We get
Z
f(x)f(x+t)f(x�t)dx � 3�

7 .

Let t ! 0 to get
Z
f3(x)dx � 3�

7 . This and the inequality
Z
jIA � f j < �=10

give
Z
I3A(x)dx � 6�

7 which yields the contradiction � �
6�
7 :

Problem 7 [Steinhaus, 1920, Fund. Math.]
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Let A be a measurable subset of R with positive measure. Let x1; x2; :::; xk
be distinct real numbers. Then there exists c 2 R and t 2 Rnf0g such that
c + txi 2 A for 1 � i � k: [ Thus, if we are given d1; d2; :::; dk 2 (0;1)
we can �ng points in A such that distnces between them are in proportion to
d1; d2; :::; dk]:

Proof: this is similar to the solution of problem 6: just look at
Z
jIA(x+ tx1)IA(x+ tx2):::IA(x+ txk)� f(x+ tx1)f(x+ tx2):::f(x+ txk)j dx

Problem 8
Let f : [a; b]! R: Then f is Lebesgue measurable if and only if the following

condition holds: for any � > 0 and any measurable set A � [a; b] with m(A) > 0
there is a measurable subset B of A such that m(B) > 0 and the oscillation of
f on B is atmost �:

Proof: if f is measurable then the oscillation of f on A\ f�1f[(i� 1)�; i�)g
is atmost � and this set has positive measure for some i:
Now suppose the given condition holds. For each set A of positive measure

and each � > 0 let FA;� be the class of all measurable subsets of positive measure
contained in A the oscillation of f on which is atmost �: Let �1 = supfm(B) :
B 2F [a;b];�g: Choose a set B1 in FA;� such that m(B1) > �1=2. If m(B1) = b�a
we stop here. Otherwise we de�ne �2 = supfm(B) : B 2FBc

1;�
g and choose

B2 � Bc1 such thatm(B2) > �2=2: Ifm(B1[B2) = b�a we stop here. Otherwise
we proceed to �nd B3 � (B1 [ B2)c; etc. We get disjoint measurable sets
B1; B2; ::: such that the oscillation of f on each of these sets is atmost �: Claim:

m([Bn) = b � a: If this is false then there is a subset E of (
[
n

Bn)
c such that

� � m(E) > 0 and the oscillation of f this set is atmost �: Note that there
are in�ntely many B0ns in this case and �n < 2m(Bn) ! 0. Hence there is an
integer n such that �n < �=2: Now E � (B1 [B2 [ ::: [Bn)c and the de�nition
of �n shows that �n � m(E) = � > 2�n a contradiction. Now let g� be f(xn) on
Bn(n = 1; 2; :::) where xn 2 Bn is arbitrary. We get a measurable function g�
with jf(x)� g�(x)j � �: It follows that f is measurable.

Problem 9
There is no metric d on the set of all Borel measurable maps : R! R such

that fn ! f pointwise if and only if d(fn; f)! 0:

Proof: IQ(x) = lim
m!1

lim
n!1

[cos(m!�x)]2n and there is no sequence from the

set f[cos(m!�x)]2n : m;n � 1g converging pointwise to IQ: This follows from
the fact that pointwise limit of continuous functions is continuous on a dense
set. [ cf. Hewitt & Stromberg, Exrecise 6.92]

Problem 9
If (an; bn) " (a; b) and f 2 C1(R) is a polynomial on (an; bn) for each n

show that f is a polynomial on (a; b):
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Proof: if f = pn on (an; bn) then pn+1 � pn � 0 on (an; bn) which implies
pn � pn+1. Hence f = p1 on (a; b).

Problem 10
If f 2 C1(R) and, for each x 2 R there is an integer n � 0 such that

f (n)(x) = 0 then f is a polynomial.

Proof: since R = [fx : f (n)(x) = 0g we conclude, from Baire Category
Theorem, that f is a polynomial on some open interval. Let U be the union
of all open intervals on which f is a polynomial. U is the union of maximal
intervals on which f is a polynomial. Such intervals exists by Problem 9. We
get disjoint intervals (a1; b1); (a2; b2); ::::We such that f is a polynomial on each
of these intervals and their union is U: Let H = U c: Then H is closed and its
interior is empty. [ if it contains an open interval then a f is a polynomial
on a subinterval of the interval, which is a contradiction]. Suppose H has an
isolated point a: Then 9 � > 0 such that [a � �; a + �] \H � fag: On each of
the intervals [a � �; a � 1

k ] (k >
1
� ); f is a polynomial. [This is because this

compact interval is contained in U and hence each point has a neighbourhood
on which f is av polynomial]. By Problem 9 f is a polynomial on [a � �; a):
Similarly, f is a polynomial on (a; a + �]: This implies, of course, that f is a
polynomial on [a� �; a+ �] contradicting the fact that a 2 H: We have proved
that H is a perfect set. Suppose H 6= ?: Now H = [fx 2 H : f (n)(x) = 0g
and Baire�s Theorem shows that there is an integer m and an interior point
x0 of fx 2 H : f (n)(x) = 0g in H: Hence there is an interval (�; �) such that
x0 2 H \ (�; �) and H \ (�; �) � fx 2 H : f (m)(x) = 0g: We claim that f is a
polynomial on (�; �): [This would imply that (�; �) � U contradicting the fact
that H \ (�; �) 6= ?]: Let y 2 (�; �): If y 2 H then f (m)(x) = 0: Otherwise,

y belongs to a maximal interval on which f is a polynomial. Let y > x0:
Then the maximal interval (a; b) on which f is a polynomial does not contain
x0 so x0 � a: Also a (and b) belong to H by maximality. Note that f(x) =
1X
n=0

f(n)(a)
n! (x�a)n on [a; b]:We know that f (n)(a) = 0 8n � m: Indeed, f (n)(z) =

0 8n � m 8z 2 H \ (�; �) as seen by an induction argument using the fact
that each point of H \ (�; �) is a limit of a sequence of distinct points of H \

(�; �): Now f(x) =
N�1X
n=0

f(n)(a)
n! (x � a)n on [a; b]: But y 2 (a; b) so f (n)(y) = 0

8n � m: We have now proved that f (m)(y) = 0 8y 2 H \ (�; �) as well as
for all y 2 (�; �)nH and hence f is a polynomial on (�; �): This leads to a
contradiction (as already observed) and hence H = ?: But then each point of
R has a neighbourhood on which f is a polynomial which implies that f is a
polynomial on R: [ Use compactness to conclude that f is a polynomial on each
of the intervals [�n; n] and then use Problem 9 to complete the proof].

Problem 11
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Let (X; d) be a complete metric space and A � X. Show that there is an
equivalent metric on A which makes it complete if and only if A is a G� in X:

Proof: if A = \Un with each Un open in X then d1(x; y) = d(x; y) +
1X
n=1

1
2n

��� 1
d(x;Ucn)

� 1
d(y;Ucn)

���
1+
��� 1
d(x;Ucn)

� 1
d(y;Ucn)

��� de�nes a metric with desired properties.
Conversely let d1 be a metric on A which makes it complete and which is

equivalent to d: Let En = fx 2
�
A : diam1(B(x; �) \ A) < 1

n for some � > 0g
where diam1 denotes diameter w.r.t. d1: It is clear that A � En 8n: Let
x0 2 \En: For each n diam1(B(x; �n) \A) < 1

n for some �n > 0: Of course, we
can assume that �n ! 0: There is a sequence fujg � A such that uj ! x0 in
(X; d): Given � > 0 we can choose n such that 1

n < �: Now d(uj ; x0) < �n and
d(uk; x0) < �n for j and k su¢ ciently large and hence d1(uj ; uk) < �: Hence
fujg is Cauchy in the complete space (A; d1): Let w 2 A and d1(uj ; w) ! 0:
Since d1 is equivalent to d we get d(uj ; w)! 0 and since uj ! x0 in (X; d) we
get x0 = w 2 A: We have now proved that A = \En: If we show that each En
is open in

�
A then we can use the fact the closed set

�
A is a G� to complete the

proof. If x 2 En then for some � > 0 diam1(B(x; �)\A) < 1
n : Let d(u; x) < �=2:

Then diam1(B(x; �=2) \A) < 1
n : This proves that En is open in

�
A for each n.

Problem 13
If fang; fbng are sequences of real numbers such that an cos(nx)+bn sin(nx)!

0 as n!1 on a set E of positive measure show that an ! 0 and bn ! 0:

Proof: Let rn = (a2n+b
2
n)
1=2 and (anrn ;

bn
rn
) = (cos�n; sin�n): Then an cos(nx)+

bn sin(nx) = rn cos(nx � �n): Thus r2n cos
2(nx � �n) ! 0 8x 2 E: If rnk � �

for some � > 0 and sequence fnkg " 1 then
Z
E

cos2(nkx � �nk)dx ! 0 which

implies
Z
E

[1 + cos(nkx � �nk)]dx ! 0: Riemann Lebesgue Lemma now shows

that
Z
E

dx = 0; a contradiction. Hence rn ! 0 and an; bn ! 0:

Problem 14

If E is a set of �nite measure in R show that
Z
E

cos2m(nx � �n)dx !

m(E) 12�

�
2m
m

�
2�2m as n!1 for any positive integer m and any �0ns 2 R:

Use this to prove the following generalization of Problem 13: lim sup jan cos(nx) + bn sin(nx)j =
lim sup[a2n + b

2
n]
1=2 almost everywhere if f(an; bn)g is bounded.
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Proof: We can write cos2m y = c0 + c1 cos(2y) + ::: + cm cos(2my) for
suitable real numbers c0; c1; :::; cm; for all y 2 R: This can be seen easily
by an induction argument. To compute c0 we integrate both sides from 0

to 2�: This gives c0 = 1
2�

2�Z
0

(cos2m y)dy: Repeated integration by parts gives

us c0 = 1
2�

�
2m
m

�
2�2m: Now

Z
E

cos2m(nx � �n)dx =

Z
E

mX
j=0

cj cos(2j(nx �

�n))dy ! c0m(E) as n ! 1 by Riemann Lebesgue Lemma. This proves the
�rst part. Now let (an; bn) = (�n cos tn; �n sin tn) (with �n > 0): We claim thatZ
E

lim sup �2mn jcos(nx� tn)j2m dx � lim sup
Z
E

�2mn jcos(nx� tn)j2m dx: This fol-

lows by applying Fatou�s Lemma to (sup �n)
2m � �2mn jcos(nx� tn)j2m : ThusZ

E

lim sup �2mn jcos(nx� tn)j2m dx � (lim sup �n)
2mm(E) 12�

�
2m
m

�
2�2m by

the �rst part. Since this inequality holds for any set E � [0; 2�] of measure we

conclude that lim sup �2mn jcos(nx� tn)j2m � (lim sup �n)
2m 1

2�

�
2m
m

�
2�2m

a.e.. Hence lim sup �n jcos(nx� tn)j � (lim sup �n)( 12�
�
2m
m

�
2�2m)1=2m a.e.

By Stirling�s formula we see that
�
2m
m

�
2�2m � cp

m
for allm su¢ ciently large

(with c > 0). Hence lim sup �n jcos(nx� tn)j � (lim sup �n)(
1
2�

cp
m
)1=2m !

lim sup �n as m ! 1: Since �n jcos(nx� tn)j � �n always, the proof is com-
plete.

Problem 15
If f : R2 ! R is separately continuous then it is continuous on a dense set.

Proof: let fn(x; y) = f( i�1n ; y)+n(x� i�1
n )[f(

i
n ; y)�f(

i�1
n ; y)] if i�1n � x �

i
n : Then each fn is continuous on R

2 and fn(x; y)! f(x; y) for any (x; y) 2 R2:
This implies that f is continuous on a dense set.

Problem 16
Prove or disprove: if � : [0;1) ! R is continuous and �(x)p(x) ! 0 as

x!1 for every polynomial p then the conclusion of Problem 1 holds with e�x

replaced by �(x): [i.e. given f 2 C([0;1)) such that f(x) ! 0 as x ! 1 and
� > 0 there is a polynomial p such that jf(x)� �(x)p(x)j < � 8x 2 [0;1)]:

This is false. We have

1Z
0

e�
4
p
x sin( 4

p
x)xndx = 0 for n = 0; 1; 2:::. [See Feller

Volume II, p. 224]. Let d�(x) = e�
1
2
4
p
x sin( 4

p
x)dx and �(x) = e�

1
2
4
p
x: Then
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� is a real measure which integrates every function of the type �(x)p(x); where
p is a polynomial to, 0. Hence such functions are not dense in the space of
continuous functions on [0;1) vanishing at 1 with the supremum norm.

Problem 17
Show that any �� algebra on N is generated by a �nite or countable in�nite

partition.

Proof: let Fbe any �� algebra on N: Say n s m if, for every F 2 F either
n and m both belong to A or both belong to Ac:We claim that the equivalence
classes under this equivalence relation form a partition which generates F . Let
W be the equivalence class of n. If m =2 W then 9 Am 2 F such that n 2 Am
and m =2 Am: We now verify that W =

\
m=2W

Am: If m =2 W then m =2 Am: If

m 2W then, for any k =2W we have n 2 Ak and k =2 Ak: But m s n and hence
m 2 Ak: It follows that m 2

\
m=2W

Am: This proves that W =
\
m=2W

Am 2 F :

Thus equivalences classes under s form a partition of N by sets from F : Of
course, any partition of N is necessarily �nite or countable in�nite. Now let
A 2 F :We claim that A is the union of all equivalence classes that are contained
in A: Let n 2 A: We have to show that the equivalence class V containing n is
a subset of A: If it contains a point m 2 Ac then m s n; n 2 A and m 2 Ac

which is a contradiction. This �nishes the proof.
[Corollary: any measure on any �� algebra on N extends to a measure on

the power set: pick an element from each member of the partition above, call
these points x1; x2; ::: and de�ne �(E) =

X
an�xn where an is the measure of

the member of the partition that contains xn].

Problem 18

If f : [0;1) ! [0;1) is continuous and if
1X
n=1

f(nx) < 1 for all x � 0

show that

1Z
0

f(x)dx < 1: If
1X
n=1

f(nx) = 1 for all x � 0 does it follow that

1Z
0

f(x)dx =1? If f : [0;1)! [0;1) is continuous and
1Z
0

f(x)dx <1 does it

follow that
1X
n=1

f(n) <1?

Since [0;1) =
1[
N=1

fx :
1X
n=1

f(nx) � Ng we conclude from Baire Cate-

gory Theorem that there is an integer N and an open interval (a; b) such that

8



1X
n=1

f(nx) � N 8x 2 (a; b): Hence

bZ
a

1X
n=1

f(nx)dx � N(b � a): This gives

1X
n=1

1
n

bnZ
an

f(y)dy < 1: This, in turn, implies
1X
n=1

1
n

1X
1+an<j<bn

jZ
j�1

f(y)dy < 1:

Since
1X

fn:1+an<j<bng

1
n ! log( ba ) we are done.

The second assertion is true and the proof is similar.

The third assertion is false:
let f(n) = 1; f(x) = 0 if x =2 [n � �n; n + �n]; f "linear" in [n � �n; n] and

[n; n+ �n] where �n > 0 and
1X
n=1

�n <1:

Problem 19

Let f : [0;1)! [0;1) is continuous and f(x+ y)� f(x)! 0 as x!1 for
each y 2 [0;1): Show that the convergence is uniform for y in compact subsets
of [0;1):

Let gn(y) = supfjf(x+ y)� f(x)j : x � ng: Then fgng is a sequence of
bounded measurable functions conveging poitwise to 0: [We remark that if f
is uniformly continuous then g0ns are continuous and hence they converge uni-
formly to 0 on compact sets]. By Egoro¤�s Theorem there is a set E � [1; 2] such
that m(E) > 0 and gn ! 0 uniformly on E: The set E +E contains an interval
(a; b) with 0 < a < b <1: We now observe that gn(y1 + y2) � gn(y1) + gn(y2)
8y1; y2 2 [0;1). Hence gn(y) ! 0 uniformly for y 2 (a; b): For y1; y2 2 (a; b)
with y1 > y2 we have jf(x+ y1 � y2)� f(x)j � jf(x+ y1 � y2)� f(x� y2)j +
jf(x� y2)� f(x)j � gm(y1)+gm(y2) provided x�y2 � m Note that x�y2 � m
if x � b + m: Let k = [b + m] + 1: Then x � k ) jf(x+ y1 � y2)� f(x)j �
gm(y1) + gm(y2) so gk(y1 � y2) � gm(y1) + gm(y2). This proves that gn ! 0
uniformly on (0; b� a): Since gn(y1 + y2) � gn(y1) + gn(y2) 8y1; y2 2 [0;1) we
now conclude that gn ! 0 uniformly on compact sets.

Remark1

gn ! 0 uniformly on [0;1) if and only if f is a constant. [ Indeed lim
t!1

f(t) =

f(x) 8x in this case].
Remark 2
Under the hypothesis of this problem, f is necessarily uniformly continuous.

[ jf(x+ y)� f(x)j < � if y 2 [0; 1] and x � n and n is su¢ ciently large. Since
f is uniformly continous on [0; n+ 1] it is so on [0;1):

Problem 20
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Does there exist a non-constant bounded C1 function : R ! R such that
f (n)(x) � 0 8n � 0; 8x 2 R?

If yes, give a counter-example. If no, give a real-analytic proof (as opposed
to a complex analytic proof).

No. If such an f exists and a > 0 then by Taylor�s Formula with remainder

we see that f(x) �
NX
n=0

f(n)(a)
n! (x � a)n for x � a;N 2 N: This shows that

f(x)!1 as x!1 unless . f (n)(a) = 0 for n � 1:

Problem 21
Find a necessary and su¢ cient condition on a continuous function f on [0; 1]

under which it can be approximated uniformly by polynomials with integer
coe¢ cients.

We claim such an approximation is possible if and only of f(0) and f(1) are
integers. �Only if�part is obvious. For the �if�part let g(x) = f(x)�f(0)+[f(0)�
f(1)]x: Then g is continuous and g(0) = 0 = g(1): Let fpkg be the set of all

primes (in increasing order) and hk(x) =
pkX
j=0

[g( jpk )pk]

�
pk
j

�
1
pk
xpk�j(1�x)pk

where [f( jpk )pk] is the greatest integer not exceeding f(
j
pk
)pk: Since g(0) = 0 =

g(1) and
�
pk
j

�
is an integer multiple of pk for 1 � j � pk � 1 we see that

hk has integer coe¢ cients. Also

������hk(x)�
pkX
j=0

g( jpk )

�
pk
j

�
xpk�j(1� x)pk

������ �
pk�1X
j=1

�
pk
j

�
1
pk
xpk�j(1� x)pk < 1

pk
[x+ (1� x)]pk = 1

pk
: Finally we recall that

pkX
j=0

g( jpk )

�
pk
j

�
xpk�j(1�x)pk ! g(x) = f(x)�f(0)+[f(0)�f(1)]x uniformly

on [0; 1]:

[ What if [0; 1] is replaced by a compact interval [a; b]?]

Problem 22

If A � R is measurable, fxng is dense and xn +A = A 8n show that either
m(A) = 0 or m(Ac) = 0 .

If m(A) > 0 and m(Ac) > 0 then 9 a < b such that (a; b) � A � Ac: Also
there is an interger n such that �xn 2 (a; b): But then �xn = x � y with
x 2 A; y 2 Ac so y = x+ xn 2 xn +A = A; a contradiction.
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Problem 23

Let f : [0; 1] ! R be a function such that for every � > 0 there is a � > 0

with
nX
j=1

jf(bj)� f(aj)j < � whenever n � 1 and
nX
j=1

jbj � aj j < �: Show that f

is Lipschitz. [ See Problem 407 for another solution].

Since f is absolutely continuous we can write f(x) =

xZ
0

g(t)dt for some

integrable function g: Let x be a Lebesgue point of g: Taking aj = x; bj = x+ �
2n

for 1 � j � n we get
nX
j=1

jf(bj)� f(aj)j < �: Hence n

�������
x+�=2nZ
x

g(t)dt

������� < �: This

holds for all n and since x is a Lebesgue point of g we get jg(x)j � 2�
� : We have

proved that g is an L1 function. Hence f is Lipschitz.

Problem 24

Let ai < bi 8i 2 I: Show that
[
i2I
[ai; bi] can be written as

1[
n=1

[ain ; bin ] for

some sequence fing � I:

Proof: let A =
[
i2I
[ai; bi] and B =

[
i2I
(ai; bi): If x 2 AnB then x 2 [ai0 ; bi0 ]

for some i0 and (ai0 ; bi0) � (�; �) for some component (�; �) of the open set B:
Clearly, x 2 [�; �]n(�; �): Hence A is the union of B and an atmost countable
set (the end points of the components of B).

Problem 25
Let a < b and F be a collection of closed non-denerate intervals such that

x 2 [a; b] implies there exists � > 0 (possibly depending on x) such that every
closed interval of length less than � containing x belongs to F . Show that there
is a partition ftig of [a; b] such that [ti�1; ti] 2 F 8i:

Let y = supS where S = fx 2 [a; b] : a < t � x ) there is a partition
ftig of [a; t] such that [ti�1; ti] 2 F 8ig: Clearly a 2 S: Since [a; a + �] 2 F for
� su¢ ciently small it follows that y > a: We claim that y = b: If y < b then
[y� �; y+ �] 2 F for � and � su¢ ciently small and there is a point s in (y� �; y]
that belongs to S: But then [a; y� �] has a partition whose sub-intervals are all
in F and [y� �; y+ �] 2 F so y+ � 2 S for � su¢ ciently small. This contradicts
tha de�nition of y: Thus y = b: Since [b� �; b] 2 F for � su¢ ciently small it is
clear that there is a partition ftig of [a; b] such that [ti�1; ti] 2 F 8i:

Problem 26
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Prove that [a; b] is compact using Problem 25.

Let fUi : i 2 Ig be an open cover of [a; b]: If x 2 [a; b] then x 2 Ui for some i.
Fix such an i for each x: Let Fx be formed by all closed intervals containing x
and contained in Ui and F be the union of the families Fx; x 2 [a; b]: Problem
25 now applies and we get a partition ftjg of [a; b] such that [tj�1; tj ] 2 F 8j:
But [tj�1; tj ] � Uij for some ij and the sets Uij form a �nite subcover of [a; b]:

Problem 27
Let f : R ! R be a function such that for each real number x there is a

� > 0 with f(y) � f(x) 8y 2 (x; x+ �) and f(y) � f(x) 8y 2 (x� �; x): Prove
that f is non-decreasing.

For each x consider the collection Fx of all intervals [c; d] containg x such
that f(y) � f(x) 8y 2 (x; d] and f(y) � f(x) 8y 2 [c; x): Let F be the union
of the families Fx; x 2 [a; b] where [a; b] is any compact interval in R. By
Problem 26 we can �nd a partition ftjg of [a; b] such that [tj�1; tj ] 2 F 8j: In
each interval [tj�1; tj ] there is a number x such that f(tj) � f(x) � f(tj�1):
Thus, f(b) � f(a): Since a and b are arbitrary points with a < b we are done.

Problem 28
Let f : [a; b] ! R be di¤erentiable. Show that f is absolutely continuous if

and ony if it is of bounded variation.

If f is absolutely continuous then it is of bounded variation, as seen easily
from the de�nition. Let f be di¤erentiable.If f is also of bounded variation
then we claim that f 0 2 L1([a; b]): Once this claim is proved we can apply
Theorem 7.21 of Rudin�s Real and Complex Analysis (Third Edition) to �nish
the proof. For proving the claim it su¢ ces to show that the derivative of any
monotone function on [a; b] (which exists a.e.) is integrable. Let f be non-

decreasing on [a; b]: For this note that

1Z
0

f 0(t)dt � lim inf

1Z
0

f(t+h)�f(t)
h dt =

lim inff 1h

1Z
0

f(t + h)dt � 1
h

1hZ
0

f(t)dtg � lim inf ff(1 + h) � f(0)g = f(1) � f(0)

where we de�ne f(t) to be f(1) for t > 1:

Problem 29
Let f : R ! R be a function and F (x) = supff(x + h) : 0 � h � �g 2

R [ f1g: Then F has right and left limits at every point.

Proof: If x0 < x < x0+ � then [x; x+ �] = [x; x0+ �][ [x0+ �; x+ �]: Hence
F (x) = maxfsupff(y) : x � y � x0 + �g; supff(y) : x0 + � � y � x + �gg:
This is the maximum of two monotonic functions (one decreasing and the other
increasing) and hence lim

x#x0
F (x) exists. Similarly lim

x"x0
F (x):
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Problem 30
[This is related to Problem 24 above]. Let A be the union of a family of

closed balls (of positive radius) in Rn: Is A necessarily a Borel set?

No! Let E be a non-Borel subset of R and A be the union of the balls
�
B((t; 0); 1) (t 2 E) in R2:Then A\fR�f1gg = E�f1g: Hence A is not Borel.

Remark: it is known that an arbitrary union of closed balls (of positive
radius) in Rn is Lebesgue measurable.

Problem 31
Prove or disprove that if p is a polynomial of degree n with leading coe¢ cient

1 then fx : p(x) > 0; p0(x) > 0; :::; p(n)(x) > 0g is an (open) interval (which may
be empty, of course).

True! Note that the result is obvious if n = 1: Assume that it is true for
polynomials of degree less than n: Then fx : p(x) > 0; p0(x) > 0; :::; p(n)(x) >
0g = fx : p(x) > 0g \ fx : q(x) > 0; q0(x) > 0; :::; q(n�1)(x) > 0g where q = p0:
The set fx : q(x) > 0; q0(x) > 0; :::; q(n�1)(x) > 0g is an open interval I (by
induction hypothesis) on which p is strictly increasing. The set fx : p(x) > 0g is
the union of a �nite number of disjoint intervals (determined by the real zeros of
p) and since p is increasing there can be only one of these intervals intersecting
fx : q(x) > 0; q0(x) > 0; :::; q(n�1)(x) > 0g: Hence the result.
Remark: the same argument works for fx : p(x) < 0; p0(x) < 0; :::; p(n)(x) <

0g: Thus, there is no need to assume that the leading coe¢ cient is 1:

Problem 32
Let f 2 C[0; 1] and 0 < tn # 0: Suppose there is a constant C 2 (0;1) such

that jf(x+ tn)� f(x)j � Ctn for all n and x with 0 � x < x + tn � 1: Show
that f absolutely continous and that it is also of bounded variation. Need f be
Lipschitz?

Let 0 � a < b � 1: For n so large that tn < b � a we have the inequalities
jf(xj + tn)� f(xj)j � Ctn where xj = a + jtn for j = 0; 2; :::; kn � [ b�atn ] � 1:
These inequalities give

���f(a)� f(a+ tn[ b�atn ])��� � C(kn + 1)tn: Letting n ! 1
we get jf(b)� f(a)j � C(b� a): We have proved that f is Lipschitz!
Remark: if f(x+tn)�f(x)tn

! 0 "boundedly" for some ftng # 0 and f is con-
tinuous then f is a constant.

Problem 32
There is a set E � [0; 1] of measure 0 such that every Riemann integrable

function f on [0; 1] has at least one point of continuity in E:

Let Q \ [0; 1] = fr1; r2; :::g and E =
1\
n=1

1[
k=1

(rk � 1
2n+k

; rk +
1

2n+k
): Then E

is a dense G� of measure 0: Let f be Riemann intergable on [0; 1] and D be
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the points of discontinuity of f . Then D has measure 0 and hence Dc is dense.

Further Dc is a G�: [ It is the set
1\
n=1

fx : Of (x) < 1
ng]. If we show that the

complement of any dense G� is of �rst category it will follow that Ec and D
are both of �rst category. Hence, Ec [D 6= [0; 1] which means E \Dc 6= ?; as

required. Let Vn be open 8n and
1\
n=1

Vn be dense. Then (
1\
n=1

Vn)
c =

1[
n=1

V cn : It

remains only to observe that V cn is a closed set with no interior.

Problem 33

If f 2 L1(R) and
Z
jf(x+ y)� f(x)j dx = �(y) as y ! 0+ show that f = 0

a.e..

Let s 2 R: Then
Z
eisxf(x+y)dx = e�sy

^

f(s) and hence

����e�sy ^f(s)� ^

f(s)

���� =����Z eisxf(x+ y)dx�
Z
eisxf(x)dx

���� � Z
jf(x+ y)� f(x)j dx = �(y) as y !

0 + : However, e
�ssy�1
y ! �is as y ! 0+ so

^

f(s) = 0 for all s 6= 0: Since
^

f is

continuous we get
^

f(s) = 0 for all s which implies f = 0 a.e.

Second proof: let a and b be Lebesgue points of f with a < b: Then

1
y

a+yZ
a

f(t)dt � 1
y

b+yZ
b

f(t)dt = � 1
y

b+yZ
a+y

f(t)d + 1
y

bZ
a

f(t)dt = 1
y

bZ
a

f(t)dt � 1
y

bZ
a

f(t +

y)dt! 0 by hypothesis. Hence f(b) = f(a): This proves that f is a.e. constant
and the constant must be 0 by integrability.

Problem 34
Let � be a �nite positive measure (or a complex measure) on the Borel ��

�eld of R. Let 0 < c < 1 and suppose m(A) = c ) �(A) = 0 (where m is the
Lebesgue measure). Show that � = 0:

We have �([x; x + c]) = 0 8x: Integrating w.r.t x from �1 to b we get
bZ

�1

Z
I[x;x+c](y)d�(y)dx = 0: By Fubini0s Theorem this gives

Z bZ
�1

I[y�c;y](x)dxd�(y) =

0: This means
Z
fminfy; bg�y+cgd�(y) = 0 8b: If b1 < b2 we get

Z
fminfy; b2g�

minfy; b1ggd�(y) = 0: Thus
b2Z
b1

(y�b2)d�(y)+
1Z
b2

(b2�b1)d�(y) = 0: Let x be any

real number such that lim
�!0

�(x��;x+�)
2� exists (and is �nite). Taking b1 = x�� and
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b2 = x+ � in above equation, dividing the equation by 2� and letting � ! 0 we
get �(x;1) = 0: This holds almost everywhere and hence everywhere (because
�(x;1) is a right-continuous function). This implies that �(A) = 0 for every
Borel set A:

Problem 35
Show that any f 2 C[0; 1] can be written as g + h where g and h 2 C[0; 1]

and they are both nowhere di¤erentiable.

Let S = ff � � : � 2 C[0; 1] and � is nowhere di¤erentiable}. Since the
complement of the set of nowhere difrferentiable functions is of �rst category
we see that Sc is of �rst category in C[0; 1]: This implies that there is atleast
one nowhere di¤erentiable function in S: Let g be such a function Then g and
f � g are both nowhere di¤erentiable.

Remark. Similarly we can show that any bounded measurable function on
R is the sum of two bounded measurable functions each of which is one-to-one.

Problem 36
Construct a topological space (X; �) and a sequence of measurable functions

ffng from [0; 1] into X such that f(x) = lim
n!1

fn(x) exists 8x 2 [0; 1] but f is
not measurable. [Here measurability is w.r.t. the Borel �� �elds on [0; 1] and
X].
Let fn(x)(t) = maxf0; 1 � n jx� tjg: If E � [0; 1] is non-Borel then V =

[fff : f(t) > 1=2g : t 2 Eg is open in X = [0; 1][0;1] with the product topology
and Ifxg; which is the pointwise limit of ffng; is not measurable because the
inverse image of V is precisely E:
Remark
If X is a metric space and ffng is a sequence of measurable functions ffng

from [0; 1] into X such that f(x) = lim
n!1

fn(x) exists 8x 2 [0; 1] then f is

measurable. To see this let U be open in X and g(x) = d(x;U c): Then g
is continuous and hence g � fn is measurable for each n. Hence g � f is also
measurable. Now fx : g(f(x)) = 0g= fx : f(x) 2 U cg and hence f�1(U) is a

Borel set in [0; 1]:

Problem 37

Let H be a complex Hilbert space and T : H ! H an isometry which is not
onto. Show that �(T ) = f� 2 C : j�j � 1g:

The range of T is closed so there is a non-zero vector y in T (H)?: Let j�j < 1:
Then < T �y; x >=< y; Tx >= 0 8x: Hence T �y = 0:We claim that � is an eigen

value of T � with eigen vector
1X
k=0

�kT ky: First note that the series
1X
k=0

�kT ky is

15



convergent because j�j kTk � j�j < 1: Also
1X
k=0

�kT ky 6= 0 because the sequence

fT kyg is orthogonal: < T ky; T jy >=< y; (T k)�T jy >=< y; T j�ky >= 0 if

j > k: Since T �(
1X
k=0

�kT ky) = T �y +
1X
k=1

�kT k�1y = �
1X
k=0

�kT ky we conclude

that � is an eigen value of T � and hence that
�
� 2 �(T ): We have proved that

f� : j�j < 1g � �(T ) which completes the proof since �(T ) � f� : j�j � 1g:

Problem 38

Let H be a Hilbert space and P;Q be projections on M and N respec-
tively. Prove that f(PQ)nxg converges for every x: What can you say about
the operator lim

n!1
(PQ)n?

We show that the (pointwise) limit is the projection on M \ N: Let An =
(QP )n=2 or P (QP )(n�1)=2 according as n is even or odd.
If n+m is odd then < Anx;Amy >=< An+mx; x > : Similarly we see that

if n and m are even then < Amx;Anx >=< An+m�1x; x > and if if n and
m are odd then < Amx;Anx >=< x;An+m�1x > :: Now kAmx�Anxk2 =<
Amx;Amx > + < Anx;Anx > �2Re < Amx;Anx > : Using above identities
we see that if we can show that < A2j�1x; x > has a limit in R as j ! 1 we
can conclude that fAnxg is Cauchy.In particular we see that lim

n!1
A2nx exists

which means Ax � lim
n!1

(QP )nx exists. Now PA2n = A2n+1 and QA2n�1A2n
so we get PA = A = QA: Any point in the range of A is a �xed point for both
P and Q and hence range(A) � N \M: But on N \M it is obviuous that
Ax = x and hence N \M � range(A): Thus range(A) = N \M and A = I on
range(A): Next we observe that PA = A and QA = A: These follow from the
realtions PA2n = A2n+1 and QA2n�1 = A2n: Thus, A� = A�P and A� = A�Q
which means A� vanishes on the ranges of (I � P ) and (I �Q) which are M?

and N?: Hence A� = 0 on M? +N? = (N \M)?: From the fact that A = I
on N \M it follows that A� = I on N \M: We have proved that A� is the
projection on N \M: It follows that A� is self-adjoint and this implies that A
is also self-adjoint. Since A2 = A we conclude that A is the projection onti its
range which is N \M:
It remains to show that < A2j�1x; x > has a limit (in R) as j !1:We prove

that the sequence f< A2j�1x; x >g is actually non-negative and decreasing.
Since < A2j�1x; x >=< Ajx;Ajx > it follows that the sequence is non-negative.
Next we note that Aj+1 = PAj if j is even and Aj+1 = QAj if j is odd. It follows
that kAj+1xk2 � kAjxk2 which proves that the sequence f< A2j�1x; x >g is
decreasing.
We have proved that (QP )n = A2n ! A; the projection on N \ M: By

symmetry it follows that (PQ)n also converges to the projection on N \M:
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Remark: let X;Y be independent random variables and Z have �nite second
moment. Let Z1 = E(ZjX); Z2 = E(Z1jY ); :::; X2n = E(X2n�1jY ); X2n+1 =
EX2njX); :::. Then Zn ! EZ in the mean. This follows immediately from
above result and the fact that if a random variable is measurable w.r.t. the
sigma �led genertaed by X as well as the sigma �led genertaed by Y then it is
independent of itself and hence a.s. constant.

Problem 39

Let M be a closed linear subspace of L1[0; 1] such that M �
[
p>1

Lp[0; 1]:

Show that M � Lp[0; 1] for some p > 1:

Since M �
[

p>1;N�1
ff 2 S :

Z
jf jp � Ng and since ff 2 S :

Z
jf jp � Ng is

closed in M we can �nd (by Baire-Category Theorem) p > 1 and N 2 N such
that ff 2 S :

Z
jf jp � Ng contains an open ball B(f0; �) in S: It follows that if

f 2 S then f0 + �
2

f
kfk1

2 ff 2 S :
Z
jf jp � Ng and f0 2 ff 2 S :

Z
jf jp � Ng

so �
2

f
kfk1

2 ff 2 S :
Z
jf jp � Ng: Thus

Z
jf jp <1 8f 2 S:

Problem 40
Prove or disprove: if k 2 N and fpng is a sequence of polynomials of degree

not exceeding k converging pointwise to 0 on [0; 1] then pn ! 0 uniformly.

True. Consider the statement: fpng is a sequence of polynomials of degree
not exceeding k converging pointwise to 0 on [0; �] for some � > 0 then pn ! 0
uniformly.
We prove the validity of this statement by induction on k: For k = 1 the

proof is trivial.Assume that it holds for a certain k: Let pn(x) =
k+1X
j=0

an;jx
j !

0 pointwise on [0; �]: Then an;0 ! 0 so
k+1X
j=1

an;jx
j ! 0 8x 2 [0; �]: Hence

k+1X
j=1

an;j(x
j � �j)! 0 8x 2 [0; �]: This gives an;1 + an;2(x+ �) + an;3(x2 + x� +

�2)+ :::+an;(k+1)(x
k+xk�1�+ :::+x�k�1+ �k)! 0 if 0 � x < �: By induction

hypothesis this gives an;k+1 ! 0; an;k + an;k+1� ! 0; :::; an;1 + an;2� + an;3�
2 +

:::+an;(k+1)�
k ! 0: Clearly these imply that an;j ! 0 for each j: This completes

the induction argument.

Remark
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There exist sequence of polynomials on C converging pointwise to a discon-
tinuous function. For example if fPng is the sequence constructed in Example
8.15 (page 264) of "An Introduction to Classical Complex Analysis" by Robert
B. Burckel then RePn(ix)! 0 for x 2 Rnf0g and RePn(ix)! 1 for x = 0: Let
pn(x) = RePn(ix); 0 � x � 1: Then fpng converges pointwise to a discontinuous
function. Since the convergence is not uniform we can �nd � > 0 and an increas-
ing sequence fnjg of positive integers such that supf

��pnk(x)� pnk+!(x)�� � � for
each k. It follows that the sequence of polynomials fpnk � pnk+!g converges
to 0 pointwise, but not uniformly. Thus, the hypotheses that the degrees of
polynomials pn are bounded cannot be omitted from Problem 40.

Problem 41

Let (X; d) be a metric space such that every decreasing sequence of closed
sets with diameters approaching 0 has non-empty intersection. Can we conclude
that (X; d) is complete?

Yes! Let fxng be Cauchy. There is a subsequence fnjg of f1; 2; :::g such
that d(xnj ; xnj+1) � 1

2j 8j: Consider the closed balls Cj with center xnj and
radius 1

2j�1 : If x 2 Cj+1 then d(x; xnj+1) � 1
2j and d(xnj ; xnj+1) �

1
2j : Hence

d(x; xnj ) � 1
2j +

1
2j =

1
2j�1 which means x 2 Cj : By hypothesis there is a point

x in
1\
j=1

Cj : Clearly, xnj ! x: Since fxng is Cauchy this implies that xn ! x:

Problem 42

Let f : [0; 1] ! R be continuous and non-decreasing. Show that there is a
sequence of polynomials fpng such that pn " f uniformly on [0; 1] and each pn
is non-decreasing.

Extend f to R so that the extended f is uniformly continuous, non-

decreasing and bounded on R. Let gt(x) =
q

t
�

Z
f(x� y)e�ty2dy where t > 0:

Then g is non-decreasing and continuously di¤erentiable. Also, gt(x) ! f(x)
uniformly for 0 � x � 1 as t ! 0: We claim that for each t; there is a se-
quence of polynomials fpng such that pn ! gt uniformly on [0; 1] and each pn
is non-decreasing. Let fqng be a sequence of non-negative polynomials con-
verging to g0t uniformly on [0; 1]: [To see that this is possible just approximarep
g0t by polynomials �n and take qn = �2n]. Let pn(y) = gt(0) +

yZ
0

qn(s)ds:

Then pn ! gt uniformly on [0; 1] and each pn is non-decreasing.. This proves
our claim. Finally we show that we can modify fpng so that pn(x) � pn+1(x)
8x; 8n: Applying the result just proved to f � 1

2n in place of f we get a non-
decreasing polynomial �n such that

���n(x)� (f(x)� 1
2n )
�� < 1

2n+2 8x; 8n: Then
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�n(x) < f(x)� 1
2n +

1
2n+2 < f(x)� 1

2n+1 �
1

2n+3 < �n+1(x) and j�n(x)� f(x)j <
1
2n +

1
2n+2 8x; 8n:

Problem 43
Let f : [0; 1] ! R be continuous and one-to-one. Show that there is a

sequence of polynomials fpng such that pn ! f uniformly on [0; 1] and each pn
is one-to-one.

f is strictly increasing and we �nd a striclty increasing sequence of strictly
increasing polynomials f�ng converging uniformly by the argument of Problem
42.

Problem 44
If P;Q and PQ are projections on a Hilbert space and P 6= Q show that

kP �Qk = 1:

Since PQ is self adjoint we have PQ = QP: Note that (P � Q)3 =
P � Q and hence (P � Q)3

n

= P � Q for any positive integer n: It follows
that kP �Qk � kP �Qk3

n

which implies kP �Qk � 1 since P 6= Q: Now
kPx�Qxk2 = kP (I �Q)x� (I � P )Qxk2 = kP (I �Q)xk2 + k(I � P )Qxk2

(because the ranges of P and (I�P ) are orthogonal) and this gives kPx�Qxk2 �
kPk2 k(I �Q)xk2 + kI � Pk2 kQxk2 � k(I �Q)xk2 + kQxk2 = kxk2 :

Remark: we actually have (P � Q)n = P � Q for any odd positive integer

n � 3: To see this note that (P �Q)n =
n�1X
j=1

�
n
j

�
PQ+ P + (�1)nQ and that

0 = (1� 1)n =
n�1X
j=1

�
n
j

�
+1+(�1)n: Thus (P �Q)n = �[1+ (�1)n]PQ+P +

(�1)nQ = P �Q if n is odd.

Problem 45

Let p be q be polynomials with real coe¢ cients. Show that ifmaxfp(x); q(x)g
is a polynomial then either p(x) � q(x) 8x or q(x) � p(x) 8x: Show that the
same conclusion holds if minfp(x); q(x)g is a polynomial.

Suppose p and jpj are polynomials. If p has a real root x0 then p(x) =
(x� x0)

k�(x) for some polynomial � with �(x0) 6= 0 and some positive integer
k: Since � does not change sign near x0 it follows that jx� x0jk is in�nitely
di¤erentiable at x0: But jx� x0jk does not have a k� th derivative at x0: Thus
p does not have any real roots, so either p(x) � 0 8x or p(x) � 0 8x: We can
now complete the proof using the identity jp� qj = 2maxfp; qg � p� q:

Problem 46
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Find a necessary and su¢ cient condition on a sequence fbng of real numbers
that

X
anbn converges whenever

X
an converges.

The condition is
X

jbn � bn+1j <1: If this condition holds then
NX
n=1

anbn =

NX
n=1

(sn�sn�1)bn =
NX
n=1

sn(bn�bn+1)+sNbN+1 where s0 = 0 and sn = a1+a2+

:::+ an(n � 1): Since the series
1X
n=1

sn(bn� bn+1) is absolutely convergent, fsng

is convergent and fbng = fb1 + (b2 � b1) + :::+ (bn � bn�1)g is also convergent
we see that

X
anbn converges.

Now suppose
X

anbn converges whenever
X

an converges. First note that

fanb+n g and fanb�n g 2 l1 whenever fang 2 l1: [if cn = janj if bn � 0 and 0
otherwise then

X
cnbn converges by hypothesis and this implies fanb+n g 2 l1:

Similarly fanb�n g 2 l1]. By a standard argument using Uniform Boundedness
Principle we get fb+n g and fb�n g 2 l1: Hence fbng is bounded. We now con-
sider the space c of all convergent sequences with the supremum norm. De�ne

TN : c ! C by TNfsng =
NX
n=1

sn(bn � bn+1) + sNbN+1: This is a sequence of

continuous linear functionals on c and we claim that lim
N!1

TNfsng exists for
every sequence fsng 2 c: To see this write an for sn � sn�1 (s0 = 0): Then

TNfsng =
NX
n=1

anbn: The claim now follows from the fact that
X

an converges.

By Uniform Boundedness Principle there is a constant M 2 (0;1) such that�����
NX
n=1

sn(bn � bn+1) + sNbN+1

����� �M 8N and for all sequences fsng with jsnj � 1

8n: Since fbng is bounded it follows that
�����
NX
n=1

sn(bn � bn+1)
����� � M + sup jbnj :

By an appropriate choice of fs1; s2; :::; sNg we conclude that
NX
n=1

jbn � bn+1j �

M + sup jbnj 8N:

Problem 47

Consider the colection of all polynomials on [0; 1] with the ordering p � q
if p(x) � q(x) 8x: Let p and q be any two polynomials. Show that one of the
following is true:
a) p(x) � q(x) 8x or q(x) � p(x) 8x
b) there is no smallest polynomial � exceeding both p and q
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Let f(x) = maxfp(x); q(x)g: Then f is continuous but it is not a polynomial.
[See Problem 45 above]. There is a sequence of polynomials fhng decreasing
uniformly to f: [ See the last part of the solution to Problem 42 above]. If there
is a smallest polynomial � exceeding both p and q then � � hn 8n and hence
� � f: But � � p and � � q so � � f: Thus f = � is a polynomial which is a
contradiction.

Problem 48
Show that if T and S are commuting operators on a normed linear space then

�(T + S) � �(T ) + �(S) where �(T ) = lim sup kTnk1=n (the spectral radius of

T ). Give examples of 2�2 matrices A and B such that �(A+B) > �(A)+�(B):

Since k(T + S)nk1=n �
nX
j=0

�
n
j

�T jSn�j we only have to show that
lim sup(

nX
j=0

�
n
j

�
�j�n�j)

n � lim sup(�j)
1=j + lim sup(�j)

1=j : This is easy.

Let A =
0 4
1 0

and B =
0 1
4 0

: Then �(A) = �(B) = 2 and �(A + B) =

5 > 2 + 2:

Problem 49

Let f : R ! R be continuous, integrable and of bounded variation. Show

that
1X

n=�1
f(2�n) = 1

2�

1X
n=�1

^

f(n):

Let V (x) be the variation of f on (�1; x]: Let g(x) =
1X

n=�1
f(x+2�n); x 2

R: We claim that g is well de�ned, continuous, of period 2� and of bounded
variation on [0; 2�]: Once this claim is established we can conclude that the

Fourier series of g converges to g at every point. In particular,
1X

n=�1
f(2�n) =

g(0) =
1X

n=�1

^
g(n) and since

^
g(k) = 1

2�

2�Z
0

g(x)e�ikxdx

=
1X

n=�1

1
2�

2�Z
0

f(x+2�n)e�ikxdx =
1X

n=�1

1
2�

2�(n+1)Z
2�n

f(x)e�ikxdx = 1
2�

1X
n=�1

^

f(k):

The interchange of the sum and the integral here follows by uniform convergence

of the series (to be eastablished). Note that we are using the notation
^

h in two
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senses: for an function h 2 L1(R);
^

h(t) =

1Z
�1

h(x)e�itxdx whereas for a periodic

function on [0; 2�] with period 2� it is 1
2�

2�Z
0

h(x)e�ikxdx:

We now prove the claim. Note that for any interval [a; b] of legth 2�;
bZ
a

1X
n=�1

jf(x+ 2�n)j dx =
1X

n=�1

bZ
a

jf(x+ 2�n)j dx =
1X

n=�1

b+2�nZ
a+2�n

jf(x)j dx =

1Z
�1

jf(x)j dx < 1: Hence g is well de�ned almost everywhere on R: Let x <

y < x + 2�: Then jf(y + 2�n)� f(x+ 2�n)j � V (y + 2�n) � V (x + 2�n) �

V (x + 2�(n + 1)) � V (x + 2�n): The series
1X

n=�1
[V (x + 2�(n + 1)) � V (x +

2�n)] is convergent. It follows easily from this that g is continuous on [x; x +
2�] for any real number x: Thus g is continuous on R: It remains only to
show that g is of bounded variation on [0; 2�]: If ftjg0�j�N is a partition of

[0; 2�] then
NX
j=0

jg(tj)� g(tj�1)j �
NX
j=0

1X
n=�1

jf(tj + 2�n)� f(tj�1 + 2�n)j =

1X
n=�1

NX
j=0

jf(tj + 2�n)� f(tj�1 + 2�n)j �
1X

n=�1
[V (2�(n+ 1))� V (2�n)] <1:

Problem 50

Let ffng be an orthonormal basis of L2([0; 2�]): Show that
1X

n=�1

Z
jfn(x)j dx =

1:
There is a function g 2 L2([0; 2�]) such that

^
g(n) = 1

n 8n 2 N: Note

that
1X

j=�1

���� ^fj(n)����2 = 1X
j=�1

��< fj ; e
inx >

��2 = einx2
2
= 1 8n 2 N: Now 1 =

1X
n=�1

1
n =

1X
n=�1

1
n

1X
j=�1

���� ^fj(n)����2
=

1X
j=�1

1X
n=�1

^
g(n)

���� ^fj(n)����2 = 1X
j=�1

1X
n=�1

^
g(n)

^

fj(n)[
^

fj(n)]
� =

1X
j=�1

< g �

fj ; fj >=
1X

j=�1
< g; fj�;

~

fj >

�
1X

j=�1
kgk2

fj�; ~fj
2

�
1X

j=�1
kgk2 kfjk2 kfjk1 = kgk2

1X
j=�1

kfjk1 :
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Problem 51

Construct probability measures �n; �n; n � 1 on [0; 1] such that
Z
fd�n �Z

fd�n ! 0 for every continuous function f : [0; 1] ! R but �n([0; x]) �
�n([0; x])9 0 for any x 2 [0; 1):

Let [a1; b1]; [a2; b2]; ::: be the intervals [0; 1=2]; [1=2; 1]; [0; 1=22]; [1=22; 1=2]; [1=2; 3=22]; [3=22; 1]; :::
. Let �n = �bn and �n = �an : If f : [0; 1]! R is continuous then it is unifrmly

continuous and bn � an ! 0 so
Z
fd�n �

Z
fd�n = f(bn) � f(an) ! 0: If

x 2 (0; 1) then �n([0; x]) � �n([0; x]) takes the values 0 and �1 each for in�-
nitely many n: For x = 0; �n([0; x])� �n([0; x]) take the values 1 and 0 each for
in�ntely many n: :

Problem 52

Let (
;=; P ) be a probability space andX;X1; X2; ::: be random variables on

it. Show that Xn
P! X if and only if Q �X�1

n
w! Q �X�1 for every probablility

measure Q on (
;=) which is equivalent to P (in the sense P << Q and
Q << P )

We �rst assume that X;X1; X2; :: are uniformly bounded. If Xn
P! X

and f : R ! R is a bounded continuous function then
Z
fd(Q � X�1

n ) !Z
fd(Q �X�1

n ) because
Z
f(Xn))

dQ
dP dP !

Z
f(X))dQdP dP by Dominated Con-

vergence Theorem. Conversely suppose Q � X�1
n

w! Q � X�1 for every proba-

blility measure Q on (
;=) which is equivalent to P:We claim that
Z
A

XndP !Z
A

XdP for any A 2 =: Once this is proved we see that kXnk2 ! kX2k and

< Xn; Y >!< X;Y > for any simple function Y: These facts imply that

kXn �Xk2 ! 0 and hence Xn
P! X: To prove the calim we assume that

P (A) > 0 and

������
Z
A

XnkdP �
Z
A

XdP

������ � �; k = 1; 2; ::: for some � > 0 and some

n1 < n2:::. Let Q(E) =
(1��)P (E\A)+�P (E\Ac)

(1��)P (A)+�P (Ac) : Then Q is equivalent to P so

(1��)
Z
A

XndP +�

Z
Ac

XndP ! (1��)
Z
A

XdP +�

Z
Ac

XdP: But
Z
XndP !

Z
XdP

so (1� 2�)
Z
A

XndP ! (1� 2�)
Z
A

XdP:
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For the general case we note thatXn
P! X if and only if tan�1n Xn

P! tan�1X

and
Z
fd(Q �X�1

n )!
Z
fd(Q �X�1

n ) if and only if
Z
fd(Q � (tan�1Xn)

�1)!Z
fd(Q � (tan�1X)�1):

Problem 53

Let A and B be any two proper subsets of R: Show that R2n(A � B) is
connected.

Suppose R2n(A � B) = (Ac � R) [ (R � Bc) and any two points if this set
can be joined by at most three line segments.

Cor: (Q�Q)c is connected in R2:

Remark: R2 can be replaced by the product of arbitrary connected spaces.
Remark: let S be any countable subset of R2. Let A = fa 2 R : (a; b) 2 S

for some b 2 Rg; B = fb 2 R : (a; b) 2 S for some a 2 Rg. Then A and B are
countable subsets of R and hence they are proper subsets of R. Thus R2n(A�B)
is connected. Now note that R2n(A�B) � R2nS. Also R2n(A�B) is dense in
R2 because no open ball can be contained in the countable set A�B. It follows
that R2nS is connected.
Thus, the complement of any countable set in R2 is connected.

Problem 54

Find all maps f : R! R such that f is both additive and multiplicative.

We have f(1) = [f(1)]2 so f(1) = 0 or f(1) = 1: In the second case additivity
gives f(mn ) =

m
n 8n � 1 8m 2 Z: Now f(x) = [f(

p
x)]2 � 0 8x � 0 and

f(x + y) = f(x) + f(y) � f(y) if x � 0: Thus f is increasing on [0;1): If it is
constant on some open interval it is easily seen to be a constant (which must be
1) everwhere. Otherwise it is strictly increasing. We claim that f(x) = x 8x: Let
x > 0 and r; s 2 Q \ (0;1) with r < x < s: Then r = f(r) < f(x) < f(s) = s:
Letting r " x and s # x we get f(x) = x: Of course, f(�x) = �f(x) so f(x) = x
8x 2 R: Now let f(1) = 0: In this case we get f(r) = 0 for all rational r: But
f is strictly increasing unless it is a constant. Thus f(x) = 0 8x: Conclusion:
f(x) = x 8x 2 R or f(x) = 0 8x 2 R:

Problem 55

What happens if R is replaced by C in Problem 54 and f is assumed to be
continuous?

We have f(rz) = rf(z) for all rational r: Again, f(1) = 0 or 1: If f(1) = 0
then f(r) = 0 for all r rational, hence for all r real. Note that [f(i)]2 = f(�1) =
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�f(1) = 0 so f(i) = 0:We now get f(a+ ib) = f(a)+ f(i)f(b) = 0: Thus f � 0
in this case. Let f(1) = 1: Then [f(i)]2 = f(�1) = �f(1) = �1 so f(i) = i
or f(i) = �i: In the �rst case f(a + ib) = f(a) + f(i)f(b) = a + ib and in the
second case f(a+ ib) = f(a)+ f(i)f(b) = a� ib: Conclusion: f � 0 or f(z) = z

8z or f(z) = �
z 8z:

Remark: continuity is essential. There exist additive, multiplicative, one-
to-one dis-continuous functions on C!:
Remark: if f : R! R is additive and non-measurable then g = eif : R! S1

satis�es g(x+ y) = g(x)g(y) and g is not measurable. Indeed, if A is a Borel set
in S1 then B � fc 2 C : eic 2 Ag is Borel in C and g�1(A) = f�1(B).

Problem 56

Let T be a compact operator on a Hilbert space H with orthonormal basis
fe1; e2; :::g: Show that kTenk ! 0:

fTeng is relatively compact. Any limit point y of this sequence satis�es the
property < y; ej >= lim

l!1
< Tenl ; ej >= lim

l!1
< enl ; T

�ej >= 0 8j for some
nj !1.

Problem 57

Show that there is a sequence of continuous functions from R to R converging
pointwise which does not converge uniformly on any open interval in R. Show
that if a sequence of analytic functions on a region 
 in C converges pointwise
then there is a non-empty open subset D of 
 such that the a subsequence
converges uniformly on compact subsets of D.

Let f(pq ) =
1
q if p; q 2 Z; q � 1 and (p; q) = 1; f(x) = 0 if x is irrational.

We claim that f is upper semi-continuous. If � > 0 then fx : f(x) < �g is
the complement of the (discrete) set of rationals p

q with p; q 2 Z; 1 � q � 1
�

and (p; q) = 1 and hence it is open. This implies that there is a sequence
of continuous functions converging pointwise to f : supff(y) � n jx� yjg; n =
1; 2; ::: is one such sequence. Since f is not continuous at rationals the sequence
cannot converge uniformly to f on any open interval.
If fn(z) ! f(z) 8z 2 
 where each fn is analytic on 
 then 
 =

[
N

fz 2


 : jfn(z)j � Ng and Baire Category Theorem implies that ffng is uniformly
bounded on some open ball B contained in 
: The sequence ffng is normal in
B and hence it has a subsequence converging uniformly on compact subsets of
B:

Problem 58
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Let � be a �nite positive measure on (1;1) and f(y) =
1Z
1

cos(xy)d�(x):

Show that f has at least one zero on [0; �]:

Consider

�Z
0

1Z
1

cos(xy)d�(x) sin ydy: By Fubini�s Theorem this is

1Z
1

�Z
0

sin y cos(xy)dyd�(x) =

1
2

1Z
1

�Z
0

[sin(y(1+x))+sin(y(1�x))]dyd�(x) = 1
2

1Z
1

[ 1�cos�(1+x)1+x + 1�cos�(1�x)
1�x ]d�(x)

= 1
2

1Z
1

[ 1+cos�x1+x + 1+cos�x
1�x ]d�(x) =

1Z
1

1+cos�x
1�x2 d�(x) < 0: It follows that

�Z
0

f(y) sin ydy < 0: If f has no zero in [0; �] then it does not change sign and since

f(0) > 0 it has to be positive throughout the interval which forces

�Z
0

f(y) sin ydy

to be positive.

Problem 59

Consider the following sets of 3� 3 real matrices:
a) fA : det(A) = 0g
b) fA : A is symmetric}
c) fA : An = 0 for some n 2 Ng
Treating a 3 � 3 real matrix as an element of R9 show that above sets of

Lebesgue measure 0:

The set in b) is a proper linear subspace of R9 and hence it has measure
0: The set in c) is comtained in the one in a). To show that the set in a) has
measure 0 expand the determinant using the �rst row and use Fubuni�s theorem.
If the 2� 2 obtained by deleting the �rst row and �rst column is non-zero then,
for �xed values of aij with (i; j) 6= (1; 1) there is only one point in our set and

so it has measure 0: The matrices A with det
�
a22 a23
a32 a33

�
= 0 have measure

0 (again by Fubini�s Theorem) unless all the entries are 0: As longas A is not
the zero amtrix there is a 2� 2 sub-matrix for which Fubuni�s Theorem can be
applied.

Problem 60

Let ffng be an orthonormal set in L2([0; 1]) and A = fx : lim
n!1

fn(x) existsg
and let f(x) = lim

n!1
fn(x) for x 2 A: Show that f = 0 a.e. on A:
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Let � > 0: There is a set Ak � A such that fn ! f uniformly on Ak

and m(AnAk) < 1
k : Now

Z
IEIAk

fn ! 0 as n ! 1 for each k and each

measurable set E: This implies
Z
IEIAk

f = 0 for each k: [Note that
Z
A

jf j �

lim inf
n

Z
A

jfnj � lim inf
n

(

Z
jfnj2)1=2

p
m(A) � 1 so f is integrable on A]. It now

folloes that
Z
IEIAf = 0 for each measurable set E; so f = 0 a.e.

Problem 61

Let T : l1 ! R be a linear map such that for any x = fxng 2 l1; T (x) =
limxnj for some subsequence fnjg of f1; 2; :::g: Show that T is continuous and
multiplicative.

Say x � y if xn � yn for each n: Write 0 for f0; 0; :::g; 1 for f1; 1; :::g; xy for
fxnyng: We have T (1) = 1 and T (x) � 0 if x � 0 so �kxk1 � T (x) � kxk1
and T is continuous. We can approximate any x 2 l1 be a sequence whose
components take only �nite number of values. [Simple function approximation
of bounded measurable functions]. Any x whose components take only �nite
number of values is a linear combination of sequence whose components take
only the values 0 and 1: Hence it su¢ ces to show that T (xy) = T (x)T (y) when
x and y are 0 � 1 sequences. If Tx = 0 or Ty = 0 then T (xy) = 0 because
xy � x and xy � y: Suppose Tx = 1 and Ty = 1: Then (x� y)2 is also a 0� 1
valued sequence and T (x� y)2 = Tx2+Ty2� 2T (xy) = Tx+Ty� 2T (xy) = 2
if T (xy) = 0: This is a contradiction and hence T (xy) = 1:

Problem 62

Let c1; c2; :::; cn be distinct complex numbers. Show that
nX
k=1

Y
j 6=k

cj�c
cj�ck = 1

for all c 2 C:

The left side is a polynomial of degree (n� 1) which has the vale 1 at each
of the points c1; c2; :::; cn:

Problem 63

Compute lim sup jan � bnj1=n for any two complex numbers a and b:

The radius of convergence of
1X
n=0

(an � bn)zn is the maximum of the radii of

convergence of
1X
n=0

anzn and
1X
n=0

bnzn and hence the answer is maxfjaj ; jbjg:

27



Problem 64

Prove the identity [x]+ [x+1=n]+ :::+[x+ n�1
n ] = [nx] for all x 2 R; n 2 N:

Let f(x) = [x]+[x+1=n]+ :::+[x+ n�1
n ]� [nx]: Note that f(x+1=n) = f(x)

8x: On [0; 1=n) we have f(x) = 0 + 0 + :::+ 0� 0 = 0:

Problem 65

If f : [0; 1] ! R satis�es jf(x)� f(y)j � C jx� yj 8x; y prove that given
� > 0 there is a polynomial p such that jp(x)� p(y)j � C jx� yj 8x; y and
jf(x)� p(x)j < � 8x:

f is absolutely continuous, so f 0 exists a.e. and f 0 is integrable. Further
jf 0(x)j � C a.e.. There is a continuous function g such that jg(x)j � c 8x
and

Z
jf 0(x)� g(x)j < �: There is a polynomial q such that jq(x)� g(x)j < �

8x and jq(x)j � C 8x. Let p(x) = f(0) +

xZ
0

q(t)dt: Then p is a polynomial,

jp(x)� p(y)j � C jx� yj 8x and jf(x)� p(x)j =

������ff(0) +
xZ
0

f 0(t)dtg � ff(0) +
xZ
0

q(t)dtg

������ �
1Z
0

jf 0(t)� q(t)j dt < �+

1Z
0

jf 0(t)� g(t)j dt < 2� 8x:

Problem 66

If f : [0; �]! R is continuous and
�Z
0

f(x) sinxdx =

�Z
0

f(x) cosxdx = 0 show

that f has at least two zeros in [0; �]:

Since sinx � 0 on [0; �] we may suppose that f takes both positive and
negative values and hence has at least one zero. Suppose it has only one zero a:

Then

�Z
0

f(x) sin(x�a)dx = 0. Hence
aZ
0

f(x) sin(x�a)dx+
�Z
a

f(x) sin(x�a)dx =

0: Since sin(x � a) < 0 on [0; a] and > 0 on [a; �] and f does not change sign
in either of these intervals it has to have the same constant sign in these two
intervals for above equation to hold. this is a contradiction since f takes both
positive and negative values.

Problem 67
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If f : R ! R is continuous and non-increasing show that it has a unique
�xed point. Use this to show that there is no continuous function f : R ! R
such that f(f(x)) = �x 8x 2 R:

Let f be non-increasing. If x < y are �xed points then x = f(x) � f(y) =
y > x; a contradiction. If there are no �xed points then either f(x) > x 8x or
f(x) < x 8x: In the �rst case f(x) ! 1 as x ! 1: However x > 1 implies
1 < x < f(x) � f(1) which leads to a contradiction by letting x!1: Similarly
in the second case f(x) ! �1 as x ! �1 and x < 1 implies f(1) � f(x); a
contradiction. Hence f has a unique �xed point.
Now let f be a continuous function : R! R such that f(f(x)) = �x 8x 2 R:

We �rst observe that f is one-to-one. Indeed, f(x) = f(y) ) �x = f(f(x)) =
f(f(y)) = �y: Thus f is strictly monotonic on R: If it is strictly increasing
then so is f � f but this contradicts the fact that f(f(x)) = �x 8x: Hence f is
strictly decreasing and the �rst part shows that it has a unique �xed point a:
But �a = f(f(a)) = a so a = 0: It follows that f(x)�x does not change sign in
(0;1) as well as in (�1; 0): Since f(0) = 0 and f is strictly decreasing we see
that f(x) < 0 for x > 0 and f(x) > 0 for x < 0: Now f(1) < 0 so f(f(1)) > 0
which leads to the contradiction �1 > 0:

Remarks: for any n the only continuous function f on R whose n�th iterate
f(n) is the identity function is the identity function itself. The only continuous
function f on R such that f(n)(x) = �x 8x is �x if n is odd and there is no
such function if n is even.

Problem 68

If f : [0; 1]! R is continuous show that 1
n

nX
j=1

(�1)jf( jn )! 0 as n!1:

This follows by writing the sum in terms of f( j�1n )�f(
j
n ) and using uniform

continuity.

Problem 69

If n is a positive integer �nd the precise number of real roots of the equation
nX
k=0

xk

k! :

If n is even then e�x <
nX
k=0

(�x)k
k! : This shows that the given polynomial has

no roots in (�1; 0) in this case. Of course,
nX
k=0

xk

k! � 1 if x � 0 so there are
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no real roots for n even. Now let n be odd. Since
nX
k=0

xk

k! ! 1 as x ! 1 and

nX
k=0

xk

k! ! �1 as x ! �1 it follows that
nX
k=0

xk

k! = 0 for some x: If there are

two real roots then the derivative of
nX
k=0

xk

k! must vanish at some point, but that

is a contradiction to the fact that the given polynomial has no real roots for n
even.

Problem 70 (universal power series)

Show that there is a power series
1X
k=1

cnx
n (with no constant term) such that

for any continuous function f : [0; 1]! C with f(0) = 0 there is a subsequence
fsnkg of the sequence of partial sums of this series converging uniformly to f
on [0; 1]:

Remark: an arbitrary continuous function cannot expressed in the form
1X
k=0

cnx
n with the series converging pointwise. Such a representation would

force f to be the restriction to [0; 1) of an analytic function on fz : jzj < 1g:

Let X be the space of all continuous functions f : [0; 1]! C with f(0) = 0:
Give X the supremum metric. Then, for any positive integer k polynomials of

the type
nX

m=1

amx
km (where n � 1; a0ks 2 C) are dense in X: (It is an easy conse-

quence of Stone-Weierrstrass Theorem that polynomials of the type
nX

m=0

amx
km

are dense in C[0; 1]: If f 2 C[0; 1] and f(0) = 0 then we can omit the constant
term). Now let ffng be a countable dense subset of X: Let p1 be a polynomial
without cosntant term such that kf1 � p1k < 1

2 : (kk is the supremum norm).
Let d1 = deg(p1) and d2 be an integer > 1+d1: Let p2 be a polynomial without
cosntant term such that

��f2(x)� p1(x)� p2(xd2)�� < 1
22 8x: By induction we get

polynomials p1; p2; ::: and an increasing sequence of integers d1; d2; ; ; ; such that��fn(x)� p1(x)� p2(xd2)� :::� pn(xdk)�� < 1
2n 8x8n: The required power series

is p1(x) + p2(xd2) + p3(xd3) + ::::

Problem 71

Show that

1Z
�1

( sin xx )2n cos(2xy)dx = 0 if jyj > 2n: Also show that the integral

is > 0 for all other values of y:
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Note that

1Z
�1

I[�1;1](t)e
itxdt = 2 sin xx for x 6= 0: (The equation holds for

x = 0 also if we interpret sin x
x as 1 when x = 0). Let f be the n�fold con-

volution of I[�1;1]: Then

1Z
�1

f(t)eitxdt = 2n( sin xx )n: By the inversion formula

1Z
�1

( sin tt )
neitxdt = (2�)2�nf(x): Clearly, f(x) > 0 if jxj < n and f(x) = 0 if

jxj � n:

Problem 72

Let f 2 C[0; 1] and f(0) = 0: Show that there is a sequence of polynomials

pn(x) =

knX
k=1

ak;nx
k converging pointwise to f on [0; 1]; uniformly on [�; 1] 8� 2

(0; 1); such that ak;n ! 0 as n!1 for every k 2 N:

Let jf(x)j < 1
n for 0 � x � tn: Let qn(x) =

knX
k=1

bk;nx
k be such that����� f(x)xn �

knX
k=0

bk;nx
k

����� < 1
n for tn � x � 1: Let pn(x) = xnqn(x):

Problem 73

If f : (0; 1)! (0;1) is decreasing show that

1Z
0

xf2(x)dx

1Z
0

xf(x)dx

�

1Z
0

f2(x)dx

1Z
0

f(x)dx

:

We have

xZ
0

(x � y)f2(y)dy � f(x)

xZ
0

(x � y)f(y)dy: This shows that the

derivative of the function (

xZ
0

yf2(y)dy)(

xZ
0

f(y)dy)� (
xZ
0

f2(y)dy)(

xZ
0

yf(y)dy) is

� 0: Hence the value of this function at x = 1 does not exceed its value at 0:

Problem 74
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If f and g are continuous functions on (0; 1) and g(x) > 0 8x show that

lim
n!1

1Z
0

xnf(x)dx

1Z
0

xng(x)dx

exists.

We have

1Z
0

xnf(x)dx

1Z
0

xng(x)dx

=

1��Z
0

xnf(x)dx+

1Z
1��

xnf(x)dx

1��Z
0

xng(x)dx+

1Z
1��

xng(x)dx

� (1��)n�+(f(1)+�) 1
n+1

(g(1)��)

1Z
1��

xndx�(1��)n�

for � = �(�) su¢ ciently small, where � =
Z
jf(x)j dx and � ==

Z
jg(x)j dx: Us-

ing the fact that (n+1)(1��)n ! 0 as n!1 we conclude that lim sup

1Z
0

xnf(x)dx

1Z
0

xng(x)dx

�

f(1)
g(1) : A similar argument shows that lim inf

1Z
0

xnf(x)dx

1Z
0

xng(x)dx

� f(1)
g(1) :

Problem 75

Say that two functions f; g : R ! R are similar if there is a bijection � :
R! R such that f = ��1 � g � �: Prove that xn and xm are similar if n = mk

for some k (or n = mk for some k). Are x2 and x2 + 1 similar? Prove that xn

and xm are similar if n and m are both odd and greater then 1. Prove that sin
and cos are not similar.

First part: de�ne �(x) to be e(log(x)
j

if x > 0;�e(log(x)j if x < 0; 0 if x = 0:
Second part is easy: if there is a bijection � such that �(x2) = [�(x)]2 + 1
then �(t) � 1 8t � 0: But [�(�x)]2 = �2(x) so �(�x) = ��(x): It follows
that j�(t)j � 1 for every real number t which implies that � is not onto R:
Thus x2 and x2 + 1 are not similar. For the third part we claim that there is
a bijection h on R such that h(x+ log n) � logm+ h(x): For this we take any
bijection h : (0; log n]! (0; logm] and de�ne h(x+ (log n)j) = h(x) + (logm)j
for j = 1; 2; ::: to get a bijection h of (0;1): De�ning h(0) to be 0 and de�ning
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h on (�1; 0) in a similar fashion we get the desired bijection h: We now de�ne
�(x) = eh(log x)(x > 0); �eh(log x)(x < 0) and �(0) = 0: Then � is a bijection of
R and �(nx) = m�(x) 8x: Finally, let f(x) = e�(log x)(x > 0); �e�(log x)(x < 0)
and f(0) = 0: Then f is also a bijection and f(xn) = [f(x)]m which proves that
xn and xm are similar. We now prove that sin and cos are not similar. Suppose
� is a bijection such that �(cos(x)) = sin(�(x)): Then �([�1; 1]) = [�1; 1]: Since
cosx = ��1(sin(�(x))) and the right side is 1 � 1 on [�1; 1] it follows that cos
is 1� 1 on [�1; 1] which contradicts the fact that cos is even.

Problem 76

Show that there is a sequence of polynomials converging pointwise, but not
uniformly, to a continuous function on [0; 1] .

xn � xn
2

: Note that (1 � 1
n )
n � (1 � 1

n )
n2 ! e: [ For the same question on

R we can take pn(x) = x
n ].

Problem 77

a) Prove or disprove: if f : R! R is a function such that f(x; y) : y 6= f(x)g
is open then f is continuous.

b) Prove or disprove: if f : R! R is a function such that f(x; y) : y > f(x)g
and f(x; y) : y < f(x)gare open then f is continuous.

First statement is false and f(x) = 1
x ; x 6= 0; f(0) = 0 is a counterexample.

For the second part we consider f(x; y) : y > f(x)g \ f(x; y) : y < a)g and
project this to R to see that fx : f(x) < ag is open for each a 2 R: Similarly,
the projection of f(x; y) : y < f(x)g \ f(x; y) : y > a)g; which is fx : f(x) > ag;
must be open. It follows that f�1(U) is open for every open interval U; hence
for every open set U:
Remark: the answer to a) changes if we assume that f is bounded. It also

changes if the graph is assumed to be connected. [cf. Gelbaum, Problems in
Analysis. See also problem 101 below].

Problem 78

Let (X; d) be a metric space. Show that X is separable if and only if there
is an equivalent metric on it which makes it totally bounded.

Let X be separable. Let fxng be a countable dense set. The map f : X !
[0; 1]N de�ned by f(x) = ( d(x;x1)

1+d(x;x1)
; d(x;x2)
1+d(x;x2)

; :::) is a homeomorphism of X into

[0; 1]N: De�ne a new metric D on X by D(x; y) = d0(f(x); f(y)) where the

metric d0 on [0; 1]N is de�ned by d0(fang; fbng) =
1X
k=1

jan�bnj
1+jan�bnj

1
2n : Since the
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range of f is relatively compact, it is totally bounded. Hence, (X;D) is totally
bounded. D is equivalent to d because f is a homeomorphism.
The converse part is fairly straightforward: cover X by a �nite number of

balls of radius n for n = 1; 2; ::: and verify that the centers of these balls form a
countable dense set.

Remark: it is clear from above proof that the two equivalent conditions
are also equivalent to the existence of a compact metric space Y such that
X is homeomorphic to a subset of Y:[ In other words, X has a metrizable
compacti�cation].

Problem 79

Let f : R ! R be additive. Show that the following statements are equiva-
lent:

a) f is continuous

b) f�1f0g is closed

c) f is bounded on some open interval containing 0

d) f(U) is not dense in R for some open set U containing 0

e) f is Lebesgue measurable

a) implies b) is obvious. Let b) hold and suppose c) does not hold. Then
there is a sequence ftng ! 0 such that jf(tn)j ! 1: Fix y 2 R with f(y) 6= 0
and consider the numbers y� f(y)

f(tn)
tn: Since this sequence converges to y we get

f(y) = 0 (by b)) which is a contradiction. c) implies d) is obvious. Now we prove
(the interesting part) that d) implies c). If c) is false there is a sequence ftng ! 0
such that jf(tn)j ! 1: Let sn = f(tn): Since f(�x) = �f(x) we may suppose
sn ! +1: If x > 0 and � > 0 is su¢ ciently small then, for n su¢ ciently large,
the length sn

x�� �
sn
x+� of the interval (

sn
x+� ;

sn
x�� ) exceeds 1 and hence it contains

an integer k: Thus, sn < k(x+ �) and k(x� �) < sn: This gives
��� f(tn)k � x

��� < �:

Hence, the interval (x� �; x+ �) contains f( tnk ) which belongs to f(��; �) if n
is su¢ ciently large. We have proved that f(��; �) intersects every open interval
contained in (0;1) and hence it is dense in (0;1). The fact that f(�x) = �f(x)
now shows that the image of every interval around 0 is dense in R: We have
now proved a) ) b) ) c) ) d) ) c): c) ) a) is elementary: if jf(x)j � M for
jxj � � then jf(y)� f(x)j < � if jy � xj < �=k and k is so large that M

k < �:
Finally we prove e) implies c). [Of course, c) implies a) and a) implies e)].
If N is su¢ ciently large then E = fx : jf(x)j < Ng has positive Lebesgue
measure. Hence, there exists � > 0 such that (��; �) � fx� y : jf(x)j < N and
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jf(y)j < Ng. It follows, by additivity, that (��; �) � fx : jf(x)j < 2Ng. Hence
c) holds.

Problem 80

Let (X; d) be a metric space. Consider the following properties of X :
a) Every real continuous function on X is bounded
b) Every real continuous bounded function on X attains its supremum
c) Every real continuous function on X is uniformly continuous
d) The image of every real continuous function on X is connected
e) d(A;B) > 0 whenever A and B are disjoint closed sets in X
Do any of the �rst the conditions a),b),c),e) imply that X is compact? Does

d) imply that X is connected?

The answers are all YES except for c) and e). N is a counter-example for c)
and e). b) requires a form of
�s Theorem where the range is an open interval in R:See problem 217 below.

Problem 81

a) Suppose f : R ! R has a left limit f(x�) at every point and suppose
f(x�) is continuous at a: Does it follow that f is continuous at a? What if
f(x�)! f(a) as x! a?

b) Suppose f : R! R is continuous and has a left derivative f 0(x�) at every
point. Suppose f 0(x�) is continuous at a: Show that f is di¤erentiable at a:

If f(x) = x 8x 6= 0 and f(0) = 1 then f(x�) = x 8x and f is not continuous.
Suppose f(x�) ! f(a) as x ! a: Then given � > 0 there is a � > 0 such
that f(a) � � � f(x�) � f(a) + � for a � � � x � a + �: We claim that
f(a) � � � f(x) � f(a) + � for a � � < x < a + �: This would complete the
proof. Suppose f(x0) < y < f(a) � � with a � � < x0 < a + �: Consider
u = inffx 2 (a � �; a + �) : f(x) > yg: Since f(x) � y for x < u we have
f(u�) � y < f(a) � � which is a contradiction. This proves that x0 does not
exist which means f(a) � � � f(x) for a � � < x < a + �: Similarly we get
f(x) � f(a) + � for a� � < x < a+ �:

For the proof of b) we proceed in a similar way: let f 0(a�)� � � f 0(x�) �
f 0(a�)+ � for a� � � x � a+ � and f(x0�h0)� f(x0) < yh0 < (f(a)� �)h we
consider h1 = inffh : f(x0�h)�f(x0) � yhg to get f 0((x0+h1)�) < (f(a)��)h;
a contradiction.

Problem 82

Let f : R! R be a function which has a local minimum at each point. Show
that its range is atmost countable. Construct an example of such a function
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which is increasing and which has the properties lim
x!1

f(x) = 1; lim
x!�1

f(x) =

�1: If f has a local minimum at each point and if f is also continuous show
that it is a constant.

Let An = fx : f(y) � f(x) 8y 2 (x � 1
n ; x +

1
n )g: Then f(R) =

[
n

f(An)

and each f(An) is at most countable: note that f(An) =
[
k

f(An\ [�k; k]) and

[�k; k] can be covered by a �nite number of intervals of length 1
2n ; if x; y 2 An

and jx� yj < 1
n then f(x) � f(y) and f(y) � f(x); so f(x) = f(y): Thus f is

constant in each of these sub-intervals, so f(An \ [�k; k]) is �nite. This proves
the �rst part. If f(x) = an for �n < x � n+ 1 with an � an+1(n 2 Z) then f
has a local minimum at each point. This answers the second part. Suppose f
has a local minimum at each point and if f is also continuous. Since the range
of f is a countable connected set it must be a singleton.

Problem 83

Find all functions f : R ! R such that f(f(x)) = f(x) 8x: Find all contin-
uous functions f : R ! R such that f(f(x)) = f(x) 8x: If f is a non-constant
convex function f : R! R such that f(f(x)) = f(x) 8x show that it is identity
on [a;1) for some real number a and give an example of such a function. Prove

that there is no di¤erentiable function f : R ! R other then the identity such
that f(f(x)) = f(x) 8x:
Let A � R; f : Ac ! A any function and f(x) = x 8x 2 A: Then f(f(x)) =

f(x) 8x: Given any f : R ! R such that f(f(x)) = f(x) 8x take A to be
f(R). This solves the �rst part. If f is continuous then A is an interval and

f(x) = x 8x 2
�
A: f : (

�
A)c ! A can be arbitrary. This answers the second

part. If f is convex the A is an interval of positive length. If A is bounded, say,
with end points a and b then, for x > b we have f(b) � �f(a) + (1 � �)f(x)

where � is de�ned by b = �a + (1 � �)x: Thus, f(x) � f(b)��f(a)
1�� = b��a

1�� > b
(where we have used the fact that f is identity on [a; b]). Thus f does not take
values in [a; b] and we have the desired contradiction. A similar argument shows
that A cannot be bounded above. Thus f is identity on [a;1) for some real
number a: Examples of such function are x+ and jxj : Finally if f : R ! R is
di¤erentiable and satis�es f(f(x)) = f(x) 8x the the range A has to be R: To
see this note that A is an interval and if it has �nite supremum b then f 0(b) = 1
which forces f to take values exceeding b at points close to b and greater than b:
This contradicts the fact that f takes values in [a; b]: A similar argument shows
that A cannot be bounded below either. Thus A = R and f(x) = x 8x:

Problem 84

Let (X1; �1) and (X2; �2) be topological spaces and f : X ! Y: Prove or
disprove the following:
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a) if (f�1(A))0 6= ; whenever A0 6= ; then f is continuous
b) if X1 = X2 = X (say) and a set A is sense in X w.r.t. �1 if and only if it

is dense in X w.r.t. �2 then �1 = �2:
c) if (f(A))0 6= ; whenever A0 6= ; then f is an open map

All the three statements are false. Let �1 be the usual topology on R and
�2 be the class of all possible unions of intervals of one of the following types:
[0; 1]; [0; a) with 0 < a � 1; (b; 1] with 0 � b < 1; (a; b) with �1 < a < b <1:
Note that �2 is the smallest topology containing all the open sets in the

usual tolpology and the interval [0; 1]:
Let f : (R; �1) ! (R; �2) be the identity map. Then f is not continuous

because f�1([0; 1]) is not open. However, if A has nonempty interior under �2
then it contains one of the intervals mentioned above and so it has non-empty
interior in �1: This completes a). b) is fasle by the same example. For c) we
just have to look at the identity map (R; �2)! (R; �1):

Problem 85

Does there exist a function f : R! R such that the smallest topology that
makes f continuous (w.r.t the usual topology on the range) is the power set of
R?

Answer: no. If so then for each x there is an open set Ux such that fxg =
f�1(Ux): Let U =

[
x2R

Ux: We can write U as a countable union, say
[
n2N

Uxn :

If x 2 R then f(x) 2 U (because x 2 f�1(Ux) � f�1(U): Thus, f(x) 2 Uxn
for some n: Hence x 2 f�1(Uxn) = fxng: We have proved that R � fx1; x2; :::g
which is a contradiction.

Problem 86

Prove that a function f from one metric space to another is uniformly con-
tinuous if and only if d(A;B) = 0 implies d(f(A); f(B)) = 0:

Solution by Suresh Nayak when the domain and range are both equal to R :
It is easy to see that f is continuous: if not 9xn ! x with jf(xn)� f(x)j �

� > 0 and we get a contradiction by taking A = fxn : n � 1g; B = fxg: If f is
not uniformly continuous then we can �nd fxng; fyng such that jxn � ynj < 1

n
and jf(xn)� f(yn)j � � > 0 8n: We may suppose that xn < yn 8n: Claim:
f(xn; yn) : n � 1g is unbounded in R2: If the claim is false there would be
integers n1 < n2 < ::: such that f(xnk ; ynk)g converges to some point (x; y):
Since jxn � ynj < 1

n we get x = y: But then f(xnk)! f(x); f(ynk)! f(x) and
jf(xnk)� f(ynk)j � � leading to a contradiction. The claim is proved and, by
going to a subsequence we may suppose jxn+1j > jxnj + 1: [ Note that since
jxn � ynj < 1

n both fxng and fyng are unbounded]. Let A = fxn : n � 1g and
B = fyn : n � 1g: Suppose f(B) is bounded. we may suppose that f(yn) ! �
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(say). Thus the diameter of the set f(fyn : n � kg) is less than �=2 if k is
large enough. Since the distance between fxn : n � kg and fyn : n � kg is 0
the distance between f(fxn : n � kg) and f(fyn : n � kg) is also 0: However
jf(xn)� f(yn)j � � so jf(xn)� f(yj)j � �� jf(yj)� f(yn)j � �=2 for all n; j �
k; a contradiction. We have proved that f(B) is unbounded. We may assume
now that f(yn) is monotonic with jf(yn+1)� f(yn)j > �: Since f is continuous
and jf(xn)� f(yn)j � � we can �nd tn 2 [xn; yn] such that jf(tn)� f(yn)j =
�=2: Now jf(tn)� f(ym)j � jf(yn)� f(ym)j � jf(tn)� f(yn)j > � � �=2 = �=2
whenever n 6= m: Thus the distance between ff(tn) : n � 1g and ff(yn) : n � 1g
is positive whereas the distance between ftn : n � 1g and fyn : n � 1g is 0:

Solution (general case) by Kannappan (student of B. Math III):
if f is not uniformly continuous then there exists � > 0 such that for every � >

0 we can �nd points x and y with d(x; y) < � but d(f(x); f(y)) � 4�: Let �1= 1.

Let d(x1; y1) < � but d(f(x1); f(y1)) � 4�: Inductively de�ne �n; xn; yn(n � 1)
satisfying the conditions �n # 0; d(xn; yn) < �n; d(f(xn); f(yn)) � 4� as follows:
having found �j ; xj ; yj(j � n) let 0 < �n+1 < minf �n2 ; d(N(xn); F (xn)); d(N(yn); F (yn))g
where N(z) = fx : d(f(x); f(z)) < �g and F (z) = fx : d(f(x); f(z)) � 2�g for
any z: Note that z 2 N(z): If F (z) = ; then d(f(x); f(z)) < 2� for all x and
4� � d(f(x1); f(y1) � d(f(x1); f(z)) + d(f(y1); z) < 2� + 2�; a contradiction.
Hence F (z) and N(z) are both non-empty for any z: Also, d(N(xn); F (xn))
and d(N(yn); F (yn)) are both � � > 0 : if u 2 F (z) and v 2 N(z) for some
z then d(f(u); f(v)) � d(f(u); f(z)) � d(f(v); f(z)) > 2� � � = �: Hence �n+1
is well de�ned. We can �nd xn+1; yn+1 such that d(xn+1; yn+1) < �n+1 and
d(f(xn+1); f(yn+1)) � 4�: This completes the construction of the sequences
f�ng; fxng; fyng: We note that if A = fxn : n � 1g and B = fyn : n � 1g then
d(A;B) = 0:We get the desired contradiction by showing that d(f(A); f(B)) �
�: For this we have to show that d(f(xm); f(yn)) � � for all m and n: For m = n
we already know that d(f(xn); f(ym)) � 4�: We �rst prove the inequality for
m < n: Suppose, if possible, d(f(xm); f(yn)) < � (*): Then d(xn; yn) < �n �
�m+1 < d(N(xm); F (xm)): Note that yn 2 N(xm) because d(f(xm); f(yn)) < �:
If xn 2 F (xm) we would have d(xn; yn) < d(N(xm); F (xm)) � d(yn; xn) a con-
tradiction. Thus xn =2 F (xm) which means d(f(xn); f(xm)) < 2�: But then
4� � d(f(xn); f(yn)) � d(f(xn); f(xm))+ d(f(xm); f(yn)) < 2�+ � by (*). Now
let m > n: Once again assume that d(f(xm); f(yn)) < �: Then d(xm; ym) <
�m � �n+1 < d(N(yn); F (yn)): Also the assumption that d(f(xm); f(yn)) < �
implies that xm 2 N(yn): Hence the previous inequality implies that ym =2
F (yn): This means d(f(ym); f(yn)) < 2�: But then 4� � d(f(xm); f(ym)) �
d(f(xm); f(yn)) + d(f(yn); f(ym)) < � + 2�: This contradiction completes the
proof.
[ See also Problem 214 below]

Problem 87

An additive subgroup of R is either dense or discrete. There are additive
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subgroups which are dense and of �rst category and there are subgroups second
category as well.

Let A be an additive subgroup of R: If there is a sequence ftng � A such
that tn > 0 8n and tn ! 0 as n ! 1 then any interval (a; b) � (0;1)
has non-empty intersection with A: This is because the length of the interval
( atn ;

b
tn
) exceeds 1 if n is su¢ ciently large and hence it contains an integer

m: It follows that mtn 2 A \ (a; b): This proves that A is dense in (0;1):
Since �a 2 A 8a 2 A it follows that A is dense in R: In the contrary case
let � = inf(A \ (0;1)). If � =2 A then there is a sequence fang in A strictly
decresing to �. In tis case jan � amj 2 (0; �) \ A for some n and m. Since
this contradicts the de�nition of � it follows that � 2 A. If x 2 A \ (�; 2�)
then x � a 2 (0; �) \ A which is again a contradiction. Thus A \ (�; 2�) = ;.
It follows by induction that A \ (n�; (n + 1)�) = ; for each positive integer n
proving that A \ (0;1) = f�; 2�; 3�; : : :g. Hence A = fn� : n 2 Zg. Now let
B be a basis for R over Q and let fbng be a sequence of distinct points in B:
Let An be the subgroup of R generated by Bnfbn+1; bn+2; :::g: Then R = [An
so at least one An must be of second category. Since this group is not discrete
it is dense.

Problem 88

Characterize metric spaces (X; d) such that pointwise convergence of a se-
quence real continuous functions on X implies uniform convergence.

Let fn(x) = f 1
1+d(x0;x)

gn where x0 2 X is �xed. Then fn(x) ! 0 unless
d(x0; x) = 0 in which case fn(x) = 1 8n: Thus, if (X; d) has the stated property
then Ifx0g is continuous. In other words, fx0g is open and this is true for
each x0: If X is an in�nite set with distinct elements x1; x2; ::: then gn(x) = k

n if
x = xk; 0 if x =2 fx1; x2; :::g de�nes a sequence of continuous functions converging
pointwise but not uniformly. Hence X is a �nite set. The converse also holds.

Problem 89

Let f : R! Rmap intervals to intervals. Does it follow that f is continuous?
What if f is also one-to-one?

f(x) = sin( 1x ) for x 6= 0; 0 for x = 0 maps intervals to intervals but it
is not continuous. [ Ramark: any derivative has intermediate value property(
Problem 416 below and its solution?) but a derivative need not be continuous].
Now assume that f is one-to-one and has intermediate value property. We claim
that f is montone. Once this is proved it follows easily that f is continuous.
Suppose, if possible, x < y < z; f(x) < f(y) and f(z) < f(y): Let I1 = f([x; y])
and I2 = f([y; z]): Then I1 and I2 are intervals and I1 \ I2 = ff(y)g. Let
[a1; b1] and [a2; b2] be their closures. Either b2 = a1 or b1 = a2: Note that
f(z) < f(y) � b1 and f(z) � a2 so a2 < b1: Thus we must have b2 = a1 and
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f(y) = b2 = a1: But f(x) 2 I1 so f(x) � a1 = f(y) which is a contradiction.
Thus we cannot have points x; y; z with x < y < z; f(x) < f(y) and f(z) < f(y):
Similarly we cannot have x < y < z; f(x) > f(y) and f(z) > f(y): This proves
that f is monotone.
Remark: the fact that f is one-to-one was used only to conclude that I1\I2 =

ff(y)g. This would be true if we only knew that I1 \ I2 is a �nite set. Thus
if f�1(fag) is empty or a �nite set for each a and if f has intermediate value
property then it is continuous.

Problem 90

Let f : (0;1) ! (0;1) be a convex function and a; b 2 R: Show that
xf(a+ b

x ) is a convex function on (0;1):

We can write f(x) = supf�ix+�i : i 2 Ig:We have xf(a+ b
x ) = supf(a�i+

�i)x+ b�i : i 2 Ig: Q.E.D.

Problem 91

Let A;B;C be subsets of a normed linear space X such that A+C � B+C
and C is bounded. Show that A is contained in the closed convex hull of B

If not, there exists a0 2 A and x� 2 X� such that x�(a0) = 1 and x�(x) < 0
for all x 2 B: Let c 2 C be such that x�(c) > supfx�(y) : y 2 Cg � �: There
exists u 2 C and b 2 B such that a0 + c = b+ u: We have 1 + x�(c) < x�(u) �
supfx�(y) : y 2 Cg < x�(c) + � which is a contradiction.

Problem 92

Let A;B;C;D be n � n matricies such that AD� � BC� = I;AB� = BA�

and CD� = DC�: Prove that A�D � C�B = I:

We have
�
A B
C D

��
D� �B�
�C� A�

�
= I and hence

�
D� �B�
�C� A�

��
A B
C D

�
=

I: This implies that A�D � C�B = I.

Problem 93

Let (X; d) be a metric space such that for any x1; x2 2 X there exists u 2 X
with d2(x1; x2) + 4d2(x; u) � 2d2(x1; x) + 2d2(x2; x) for all x 2 X: Show that u
is uniquely determined by x1 and x2 and that d(u; x1) = d(u; x2) =

1
2d(x1; x2):

Prove or disprove that d2(x1; x2) + 4d2(x; x1+x22 ) � 2d2(x1; x) + 2d2(x2; x) for
all x 2 X when X is a normed linear space.
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We have d2(x1; x2) + 4d2(x1; u) � 2d2(x1; x2) and d2(x1; x2) + 4d2(x2; u) �
2d2(x1; x2) so d2(x1; u) � 1

4d
2(x1; x2) or d(x1; u) � 1

2d(x1; x2) and d(x2; u) �
1
2d(x1; x2): If strict inequality holds in one of these we get d(x1; x2) <

1
2d(x1; x2)+

1
2d(x1; x2) = d(x1; x2); a contradiction. Hence d(u; x1) = d(u; x2) =

1
2d(x1; x2):

Now 4d2(x; u) � 2d2(x1; x) + 2d
2(x2; x) � d2(x1; x2) 8x: If x is a point of x

with d(x; x1) = d(x; x2) =
1
2d(x1; x2) we get 4d

2(x; u) � 0 so x = u: If X is a
normed linear space then the inequality d2(x1; x2)+4d2(x; x1+x22 ) � 2d2(x1; x)+
2d2(x2; x) need not hold for all x 2 X! Let X = C[0; 1]; x1(t) = 0; x2(t) = 2�2t
(0 � t � 1): If x(t) = 1(0 � t � 1) then d(x1; x2) = 2; d(x; x1+x22 ) =
1; d(x1; x) = 1 and d(x2; x) = 1: Hence d2(x1; x2) + 4d2(x; x1+x22 ) = 8 and
2d2(x1; x) + 2d

2(x2; x) = 4:

Problem 94

True or false: if X is a normed linear space then kx� yk2 + kx+ yk2 �
2 kxk2 + 2 kyk2 8x; y 2 X:
True or false: if X is a normed linear space then kx� yk2 + kx+ yk2 �

2 kxk2 + 2 kyk2 8x; y 2 X:

Both are false. In fact the transformation (x; y) ! (x+y2 ; x�y2 ) shows that
the two properties are equivalent and hence they are both equivalent to the fact
that X is an inner product space.

Problem 95

Let X be a normed linear space and f : X ! R is locally convex in the
sense for each x 2 X there exists � > 0 such that f is convex on B(x; �): Does
it follow that f is convex on X?

Yes. Let x; y 2 X and consider the function g(t) = f(tx+(1�t)y); 0 � t � 1:
Then g is locally convex on [0; 1]: Hence its right hand derivative is locally
increasing which implies it is increasing. Hence g is a convex function and so is
f: [ g(t) � (1� t)g(0) + tg(1)].

Problem 96

Let f�ng be a sequence of continuous functions : (0;1)! (0;1): Show that
there is a continuous function f : (0;1)! (0;1) which !1 faster then each
of the �0ns [i.e. lim

x!1
f(x)
�n(x)

=1 for each n]

Let an = supffn(x) : 0 < x � ng where fn = maxf�1(x); �2(x); :::; �n(x):

Let f(x) =
�

(n+ 1)an+1 + 1 if n � x � n+ 1=2
2[(n+ 2)an+2 � (n+ 1)an+1]x+ (n+ 1)an+1 + 1� (2n+ 1)[(n+ 2)an+2 � (n+ 1)an+1] if n+ 1=2 � x � n+ 1

�
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Then f is continuous and inf
n�x�n+1

f(x) = (n + 1)an+1 + 1: It follows that

inf
n�x�n+1

f(x)

sup
n�x�n+1

fn(x)
�

inf
n�x�n+1

f(x)

sup
0<x�n+1

fn(x)
=

inf
n�x�n+1

f(x)

an+1
= (n+1)an+1+1

an+1
> (n + 1): Thus

f(x)
fn(x)

> n+1 if n � x � n+1: If n+k � x � n+k+1 then f(x)
fn(x)

� f(x)
fn+k(x)

> n+k:

This implies that f(x)
fn(x)

!1 as x!1 for each n: Of course, f(x)
�n(x)

� f(x)
fn(x)

so
f(x)
�n(x)

!1 as x!1 for each n:
Remark: supff(y) : 0 � y � xg is easily seen to be a continuous increasing

function exceeding f at every point. By problem 197 of CASolutions.tex it
follows that there is an entire function g such that g(x) � �n(x) 8x 2 R;8n 2 N:
In particular g is "smooth".

Problem 97

Prove that the Hausdor¤ dimension of the Cantor�s ternary set C is log 2
log 3

[For A � R and p > 0 let �p(A) = lim
�!0

inff
1X
n=1

(diam(Un))
p : U 0ns are open

with diam(Un) � � 8n and A �
1[
n=1

Ang: There is a unique d > 0 such that

�p(A) =1 if p < d and �p(A) = 0 if p > d: d Is called the Hausdor¤ dimension
of A].

Let �p;�(A) = inff
1X
n=1

(diam(Un))
p : U 0ns are open with diam(Un) � � 8n

and A �
1[
n=1

Ung: Let the 2n closed intervals that remain at the n� th stage in

the construction of C be In;1; In;2; :::; In;2n : Then C �
2n[
j=1

In;j and �p;3�n(C) �

2nX
j=1

(diam(In;j))
p = 2n 1

3np = 1 if p =
log 2
log 3 : Hence the Huasdor¤ dimension of C

does not exceed log 2
log 3 :

Now let U 0ns be bunded open sets with and C �
1[
n=1

Un: Let Jn = [inf Un; supUn]:

Let Vn = (inf Un� �
2n ; supUn+

�
2n ): Then C �

1[
n=1

Vn and hence there is a pos-

itive integer N such that C �
N[
n=1

Vn: If diam(Vn) < 1=3 then we can �nd

an integer kn such that 1
3kn+1

� diam(Vn) <
1
3kn

: Note that
�
Vn can inter-

sect at most one of the intervals Ikn;1; Ikn;2; :::; Ikn;2kn : This is because these
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intervals are separated by a distance of 1
3kn

and diam(Vn) < 1
3kn

: Choose j

so large that 1
3j+1 � diam(

�
Vn) and j > kn for 1 � n � N: If

�
Vn intersects

one of the intervals Ikn;1; Ikn;2; :::; Ikn;2kn ; say Ikn;l then Ikn;l contains 2
j�kn

intervals at the j � th step in the construction of C: Hence
�
Vn intersects at

most 2j�kn intervals at the j � th step in the construction of C: Hence, the

sets
�
Vn; 1 � n � N can intersect atmost

NX
n=1

2j�kn of those intervals. But

C �
N[
n=1

�
Vn and hence all the intervals Ij;1; Ij;2; :::; Ij;2j intersect

N[
n=1

�
Vn: It fol-

lows that if t = log 2
log 3 then 2

j �
NX
n=1

2j�kn �
NX
n=1

2j�kn3t+knt(diamVn))
t [because

1
3kn+1

� diam(Vn)] =
NX
n=1

2j+1(diamVn))
t and

NX
n=1

(diamVn))
t � 1

2 = 3
�t: This

gives
NX
n=1

(diamUn) + �=2n�1)t � 3�t and
1X
n=1

(diamUn) + �=2n�1)t � 3�t: Let-

ting � ! 0 we get
1X
n=1

(diamUn))
t � 3�t: This holds for any cover of C by

bounded open sets and hence �t(C) � 3�t: In particular �t(C) > 0 and hence
the Hausdor¤ dimension of C is at least t = log 2

log 3 : This completes the proof.

Problem 98

Show that there is no sequence fang converging to 0 such that
^

f(n) ! 0

faster then fang for every continuous function f on R with period 2�:[ "
^

f(n)! 0

faster then fang" means
^

f(n)
an

! 0].

For each k let nk be so large that jank j < 1
k2 : We may suppose nk < nk+1

8k: Let f(x) =
1X
k=1

einkx

k2 : Then

���� ^f(nk)ank

���� = ��� 1
k2ank

��� > 1
Problem 99

Let f : R! R be a continuous function such that lim
h!0

f(x+h)+f(x�h)�2f(x)
h2 =

0 8x: Prove that f(x+h)+f(x�h)�2f(x)
h2 = 0 for all x and all h 2 R: Find all

functions f with this property.

If f(x) � �x + � then f(x+h)+f(x�h)�2f(x)
h2 = �(x+h)+�(x�h)�2�x

h2 = 0: We
prove that the only functions satisfying the given property are these. Let g(x) =
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f(x) � f(a) � x�a
b�a ff(b) � f(a)g for a < x < b (where a and b with a < b are

arbitrary).
Then g(a) = 0 = g(b): If we prove that g(x) = 0 8x 2 (a; b) then, since a and

b are arbitrary we get the desired conclusion. Suppose, if possible, g(x0) > 0
for some x0 2 (a; b): Let �(x) = g(x) � 1

2�(x � a)(b � x) where � > 0 is small
that g(x0) � 1

2�(x0 � a)(b � x0) > 0: Then � has a positive maximum on [a; b]
attained at some point u of (a; b): We have �(u� h) + �(u+ h)� 2�(u) � 0 for
jhj su¢ ciently small:We now compute �(x+h)+�(x�h)�2�(x)h2 in terms of g:We get
�(x+h)+�(x�h)�2�(x)

h2 = g(x+h)+g(x�h)�2g(x)
h2 � �

2
(x+h�a)(b�x�h)+(x�h�a)(b�x+h)�2(x�a)(b�x)

h2 =
g(x+h)+g(x�h)�2g(x)

h2 + � = f(x+h)+f(x�h)�2f(x)
h2 + � ! � as h ! 0: This contra-

diction shows that f(x) � �x+ � for some � and �:

Problem 100

Let fang be a sequence of real numbers such that
1X
n=0

anx
n converges for all

x > 0: Show that the equation

1Z
0

e�x
1X
n=0

anx
ndx =

1X
n=0

an

1Z
0

e�xxndx holds if

the series on the right is convergent.

Remark: this is a result on interchange of limit and integral where the basic
theorems of measure theory don�t seem to be of much use!

First note that

1Z
0

e�xxndx = n!: Let bn = (n!)an: It is given that
1X
n=0

bn is

convergent. Let � > 0 and choose T 2 (0;1) such that e�T
NX
n=0

Tn

n! < � where

N is so large that

�����
1X
n=k

bn

����� < � for k > N: We write ck for
1X
n=k

bn so jckj < � for

k > N:

Now

�����e�T
1X
n=0

cn
Tn

n!

����� � (sup jcnj) e�T
NX
n=0

Tn

n! + �e�T
1X

n=N+1

Tn

n! < (sup jcnj)

e�T
NX
n=0

Tn

n! + � < �(1 + sup jcnj): We have to show that
1X
n=0

bn
n!

1Z
T

e�xxndx ! 0

as T !1: [ Indeed
TZ
0

1X
n=0

ane
�xxndx =

1X
n=0

an

TZ
0

e�xxndx (by uniform convergence of the power

series)
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=
1X
n=0

an(

1Z
0

e�xxndx�
1Z
T

e�xxndx) =
1X
n=0

an(

1Z
0

e�xxndx)�
1X
n=0

an(

1Z
T

e�xxndx)].

Note that

1Z
T

e�xxndx = e�T fTn+nTn�1+:::+(n!)T 0g: To show
1X
n=0

bn
n! e

�T fTn+

nTn�1+:::+(n!)T 0g ! 0: This means
1X
n=0

bne
�T fTnn! +

Tn�1

(n�1)!+:::+
T
1!+T

0g ! 0:

Writing bn as cn � cn+1 this becomes e�T
1X
n=0

cn
Tn

n! : We have already seen that�����e�T
1X
n=0

cn
Tn

n!

����� < �(1 + sup jcnj) for T such that e�T
NX
n=0

Tn

n! < � where N is so

large that

�����
1X
n=k

bn

����� < � for k > N and the proof is complete.

Problem 101

If the graph of f : R! R is closed and connected then f is continuous. This
does not extend to maps between general connected metric spaces.

First, the counter-example: let X be C[0; 1] with the L1 metric and Y be
C[0; 1] with the sup metric. Let f be the identity map from X to Y: The
graph of this map is a subspace, hence convex, hence path connected. The
graph is clearly closed but f is not continuous. Now the proof of the �rst
part: Let xn ! x and jf(xn)j ! 1: We claim that there is a � > 0 such that
jy � xj � � ) jf(x)� f(y)j < 1 or jf(x)� f(y)j > 2: If the claim is false then
we can �nd a sequence fung converging to x such that 1 � jf(x)� f(un)j � 2
8n: There is a subsequence ff(unk)g of ff(un)g converging to some point w:
Since the graph is closed we get w = f(x): But 1 � jf(x)� wj : This proves the
claim. Let G be the graph of f: Then G\f[a; b]�Rg = (G\f[a; b]�Rg\f(t; s) :
jf(x)� sj < 1g) [ (G \ f[a; b]� Rg \ f(t; s) : jf(x)� sj > 1g) where [a; b] is the
interval [x � �; x + �]: If we prove that G \ f[a; b] � Rg is connected we get a
contradiction because the two sets on the right contain (x; f(x)) and (xn; f(xn))
for n su¢ ciently large. This would prove that xn ! x implies that ff(xn)g is
bounded and the fact that g is closed shows the only limit point of this bounded
sequence is f(x): It follows that f is continuous. To complete the proof we prove
that G \ f[a; b]� Rg is connected. If g : G \ f[a; b]� Rg ! f0; 1g is continuous
we can extend it to a continuous function g : G! f0; 1g by making it constant
on g : G \ f(�1; a] � Rg and on g : G \ f[b;1) � Rg: The extended function
must be a constant and so must be the original function.

Problem 102.
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Let I = (a; b) be a �nite or in�nite open interval in R and d be a metric on
it which is equivalent to the usual metric. Prove that there exist disjoint closed
sets A and B in I such that d(A;B) = 0:

If a = �1 and b = 1 let A = N. For each n 2 N choose �n > 0 such
that d(n; n + �n) <

1
n : This is possible because n +

1
k ! n as k ! 1: Let

B = fn + �n : n 2 Ng: Then A and B are disjoint closed sets in (I; d) and
d(A;B) = 0:
If a > �1 take A = fa + 1

n : n 2 Ng and B = fa + 1
n + �n : n 2 Ng

where d(a + 1
n ; a +

1
n + �n) <

1
n 8n: If b < 1 take A = fb � 1

n : n 2 Ng and
B = fb� 1

n � �n : n 2 Ng where d(b�
1
n ; b�

1
n � �n) <

1
n 8n:

Problem 103

Suppose A � Rn is such that the distance between any two points is rational.
Prove that A is atmost countable.

By translation we may suppose 0 2 A: The result is obvious for n = 1 since
A � Q in that case. Assume that the result holds in Rk if k < n: We may
assume that A spans Rn: Let fx1; x2; :::; xng be a basis for Rn contained in A:
For any rationals r; r1; :::; rn we claim that there is at most one point x such
that kx� xik = ri 8i and kxk = r: Indeed if x and y both have norm r and
distance ri from xi = xi 8i then < x; xi >=

1
2 [r

2
i � r2 � kxik2] =< y; xi >

8i which means x � y is orthogonal to each xi: Thus, with each a 2 A we can
associate (n+1) rational numbers r; r1; :::; rn and this association is one-to-one.
Note that Q can be replaced by any countable set.

Problem 104

Let A � Rn be countable. Show that RnnA is connected.

Consider the sets ftx : t > 0g where kxk = 1: These sets are disjoint and
hence only countable many of them can intersect A: Similarly fy : kxk = rg
can intersect A for at most countably many positive numbers r: Removing these
we get rays and circles disjoint from A and the union of these rays and circles
is a connected dense subset of Rn containes in RnnA. Since any set that lies
between a connected set and its closure is connected the result follows.

Problem 105

Let X be a separable normed linear space and f be a continuous linear
functional on a subspace M of X: Show without using Zorn�s Lemma ( or any
of its equivalents) that f can be extended to a continuous linear functional on
X with the same norm.

Let fxng be the intersection withM c of a countable dense set inX: LetMn =
span(M [ fx1; x2; :::; xng); n = 1; 2; :::. As in the usual proof of Hahn-Banach
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Theorem we get extensions f1; f2; ::: of f toM1;M2; ::: such that kfnk = kfk 8n

and fn+1 = fn on Mn 8n: Let N =
1[
n=1

Mn and de�ne g(x) = fn(x) if x 2Mn:

Then g is a continuous linear map on the subspace N and kg(x)k � kfk kxk
8x: Since N is dense in X it is obvious that g extends to a continuous linear
functional on X with the same norm as f:

Problem 106

Let f : [0; 1] ! R be a continuous function such that f(x) >

xZ
0

f(t)dt

8t 2 [0; 1]: Prove that f(x) > 0 8x 2 [0; 1]:
Is the following discrete analog true?
If a1; a2; :::; aN are real numbers such that ak+1 > a1 + a2 + ::: + ak for

1 � k < n then ak > 0 for all k:

Let g(x) = e�x
xZ
0

f(t)dt: Then g0(x) = e�x[f(x) �
xZ
0

f(t)dt] > 0 for all x:

Hence g is strictly increasing. Also g(0) = 0 so g(x) is positive. It follows that g2

is also strictly increasing. Now d
dxg

2(x) = 2g(x)g0(x) = f2e�x
xZ
0

f(t)dtgfe�x[f(x)�

xZ
0

f(t)dt]g: This proves that
xZ
0

f(t)dt � 0 and the hypothesis shows f(x) > 0:

The discrete version is obviously false. [And obviously ak > 0 for k > 1 if
a1 = 0].

Problem 107

Let p(x) = x2 + ax+ b and A be the 3� 3 matrix with entries p(i� j); 0 �
i; j � 2: Show that the determinant of A does not depend on the coe¢ cients of
p:

We have A =

0@ p(0) p(�1) p(�2)
p(1) p(0) p(�1)
p(2) p(1) p(0)

1A : Add the �rst column and (�2)

times the second column to the third column. One sees easily that the third

column becomes

0@ 2
2
2

1A : For example, p(0)� 2p(�1) + p(�2) = b� 2(1� a+

b)+ (4�2a+ b) = 2: Now subtract the �rst row from the second and third rows

to get a matrix whose last column is

0@ 2
0
0

1A : Expanding the determinant from
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the last column we see that the value of the determinant is 2[p(1)� p(0)][p(1)�
p(�1)]� 2[p(2)� p(0)][[p(0)� p(�1)] which is 8:

Remarks: the argument actually works for monic polynomials of any degree
and the value of the determinant is (n!) n+1 when p(x) is of the type xn +
an�1x

n�1 + an�2x
n�2 + :::+ a1x+ a0: [AMM, 2010]

Problem 108

Let A be a bounded set in a Hilbert space. Show that there is a unique
closed ball of minimal radius containing A:

Let � = inffr > 0 : A �
�
B(x; r) for some x: Let � > 0 and A �

�
B(xn; rn)

with rn # �: Let n0 be such that rn <
p
�2 + � for n � n0: Claim: A �

�
B(xn+xm2 ;

p
�2 � �) if n and m are � n0 and kxn � xmk � 8�: Once this claim

is established we get a contradiction to the de�nition of � and we can conclude
that kxn � xmk < 8� whenever n and m are � n0: This would prove that fxng

is Cauchy; if xn ! x it is clear that A �
�
B(x; �) proving the existence part.

Let a 2 A: Then ka� xnk � rn and ka� xmk � rm: This gives kxn � xmk2 +
4
a� xn+xm

2

2 = 2 ka� xnk2 + 2 ka� xmk2 � 2r2n + 2r2m < 4(�2 + �): Hence

kxn � xmk � 8� implies 4
a� xn+xm

2

2 � 4(�2+�)�8�: This holds for all a 2 A
so A �

�
B(xn+xm2 ;

p
�2 � �): This completes the proof of existence. Unique-

ness: suppose A �
�
B(x; �) and A �

�
B(y; �): If a 2 A then ka� xk � � and

ka� yk � �:We have kx� yk2+4
a� x+y

2

2 = 2 ka� xk2+2 ka� yk2 � 4�2:
If kx� yk = � > 0 then

a� x+y
2

2 � �2 � 1
4�
2 8a 2 A contradicting the de�-

nition of �: Hence x = y:

Problem 109 [See also Problem 1]

Let � be a �nite positive measure on the Borel subsets of (0;1): If g 2 L1(�)

and

1Z
0

e�xp(x)g(x)d�(x) = 0 for every polynomial p show that g = 0 a.e. [�]:

Conclude that fe�xp(x) : p is a polynomialg is dense in L1(�):

The second part follows immediately from the �rst. For the �rst part let

�(z) =

1Z
0

e�zxg(x)d�(x) for z 2 C with Re(z) > 0: A straightforward argu-

ment shows that � is analytic in fz 2 C: Re(z) > 0g: Further, �(n)(z) =
1Z
0

(�x)ne�zxg(x)d�(x) for z 2 C and n � 0: By hypothesis this gives �(n)(1) = 0
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8n � 0: It follows that �(z) = 0 whenever Re(z) > 0: In particular
1Z
0

e�txg(x)d�(x) =

0 if t > 0. The �nite positive measures �1 and �2 de�ned by d�1 = g+d� and
d�2 = g�d� have the same Laplace transform and hence they are equal. This
means g(x)d�(x) = 0 which is what we wanted to prove.

Problem 110

Find all continuous functions f : (0;1)! (0;1) such that x!
kxZ
x

f(t)dt is

constant on (0;1):

If k = 1 then f is arbitrary. Assume that k 6= 1: We have 0 = d
dx

kxZ
x

f(t)dt =

kf(kx)� f(x): Let g(x) = xf(x): Then g is continuous on (0;1) and g(kx) =
kxf(kx) = xf(x) = g(x) 8x: There is a continuos function h on (0;1) such
that h(x + �) = h(x) 8x and f(x) = g(x)

x = h(ln x)
x where � = ln k: This is the

desired characterization.

Problem 111

Let A � C be a convex set such that x 2 A) �x 2 A: If a1; a2; a3 2 A show
that at least one of the 6 numbers a1+a2; a1�a2; a2+a3; a2�a3; a3+a1; a3�a1
must be in A:

Since the three given points are necessarily lineraly dependent over R we can
�nd r; s; t 2 R not all 0 such that ra1+sa2+ta3 = 0: Suppose t = 0: Then we can
either write a1 = �a2 or a2 = �a1: If a1 = �a2 it is easy to see that a2�a1 2 A:
By symmetry the same thing holds if a2 = �a1: Similar argument can be given
in the case s = 0 and the case r = 0: Assume now that all the coe¢ cients r; s; t
are non-zero. By a suitable change of notations we may suppose jrj � jsj and
jrj � jtj : We have a1 = � s

ra2 �
t
ra3: Since

x 2 A ) �x 2 A we may suppose a1 = �a2 + �a3 with � and � � 1: Now
a2+a3 = �1a1+�2a2+�3a3 where �1 =

1
�+��1 ; �2 =

��1
�+��1 ; �3 =

��1
�+��1 : This

proves that a2 + a3 2 A:

Problem 112

Show that every polynomial p with real coe¢ cients and real roots satis�es
the inequality (n� 1)[p0(x)]2 � np(x)[p00(x)] where n is the degree of p:

We use induction on n: The result is obvious if n = 1: Assume that it holds
for n = k and consider a polynomial p of degree k + 1 with real coe¢ cients
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and real roots. We can write p(x) = (x � a)q(x) where q is a polynomial of
degree k and a 2 R: We have to show that k[(x � a)q0(x) + q(x)]2 � (k �
1)(x � a)q(x)[(x � a)q00(x) + 2q0(x)]: By induction hypothesis the right side
is � (k � 1)(x � a)2 k�1k [q0(x)]2 + 2(k � 1)(x � a)q(x)q0(x): We have to show
that 1

k (x� a)
2[q0(x)]2 + k[q(x)]2 � 2(x� a)q(x)q0(x): This inequality says that

[ 1p
k
(x� a)q0(x)�

p
kq(x)]2 � 0 which is true.

Problem 113

Find supf

(

1Z
0

f(x)dx)2(

1Z
0

g(x)dx)2

1Z
0

[f(x)]2dx

1Z
0

[g(x)]2dx

: f; g : [01]! R are continuous;
1Z
0

f(x)g(x)dx =

0g:

The answer is 1
4 : To show that the supremum is � 1

4 we may suppose that
1Z
0

[f(x)]2dx = 1 =

1Z
0

[g(x)]2dx: We can extend ff; gg to an orthonormal basis

for L2([0; 1]) and Bessel�s inequality gives

1Z
0

12dx � (
1Z
0

f(x)dx)2+(

1Z
0

g(x)dx)2:

Hence 1 � 2(

1Z
0

f(x)dx)(

1Z
0

g(x)dx) showing that the given spremum is � 1
4 .

Let f 2 C([0; 1]) satisfy the conditions

1Z
0

f(x)dx = 1 and

1Z
0

[f(x)]2dx = 2:

[1+
p
3(2x� 1) satis�es these conditions]. Let g = 2� f: Then

1Z
0

f(x)g(x)dx =

0;

1Z
0

g(x)dx = 1 and

1Z
0

[g(x)]2dx = 2: Hence

(

1Z
0

f(x)dx)2(

1Z
0

g(x)dx)2

1Z
0

[f(x)]2dx

1Z
0

[g(x)]2dx

= 1
4 :

Problem 114

a) Let U be an open set in R; F a closed set and U � F: Show that there is
a set A whose interior is U and closure is F:
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b) Find all sets A � R such that A = @B for some B � R:

Let A = U [ (@F ) [ ((Q \ F )n
�
U): [@F is the boundary of F ]. U � A so

U � A0: Let x 2 A0: Suppose, if possible, x =2 U: Note that A � F so A0 � F 0:

Thus x 2 F 0: Since x 2 A and x =2 U [ @F it follows that x 2 (Q \ F )n
�
U:

Thus, x =2
�
U: We can �nd r > 0 such that B(x; r) � A \ F 0 \ (U)c � Q \ F

(by de�nition of A). But Q has no interior and this contradiction proves that

A0 = U: Now,
�
A � F: Let x 2 F: If x 2 @F then x 2 A �

�
A: Otherwise,

x 2 F 0: If x 2
�
U then x 2

�
A: Otherwise x 2 F 0n

�
U and there exists � > 0 such

that B(x; �) � F 0n
�
U: If fxng is a sequence of rationals in B(x; �) converging

to x then xn 2 (Q \ F )n
�
U for each n which implies xn 2 A for each n: Thus

x = limxn 2
�
A: This completes the proof.

b) If A is any closed set in R let D = @A[ (Q\A0): Clearly A � @A[ (Q\

A0)� �
�
D: Hence

�
D = A:We claim that D0 = ;: Suppose x 2 D0: If x 2 Q\A0

then there is a ball B(x; r) � D \ A0 and hence this ball cannot intersect @A:
However B(x; r) � D = @A [ (Q \ A0) so B(x; r) � D = (Q \ A0) � Q; a
contradiction. Thus, x =2 Q \ A0 which shows x 2 @A: We have proved that
D0 � @A: Clearly @A has no interior and we have proved that D0 = ;: Now
note that @D =

�
DnD0 = An; = A: Thus a set is the boundary od another set

if and only if it is closed.

Remark: only two properties of Q are used in the proofs above: it has no
interior and it is dense. The results therefore extend to any topological space
in which such a set exists. [ Countability of Q is not required]

Problem 115

Let H be a Hilbert space and C be a closed convex subset. For any x 2 H
let Px be the unique point of C that is closest to C. Show that kx� yk2 �
kx� Pxk2 + ky � Pxk2 8y 2 C:

We have kx� yk2 = kx� Pxk2 + ky � Pxk2 + 2Re < x� Px; Px� y > : If
possible let Re < x� Px; Px� y >< 0: Let � 2 (0; 1) and u = �y + (1� �)Px:
Note that u 2 C: Consider kx� uk2 = kx� �y � (1� �)Pxk2 =

< x � �y � (1 � �)Px; x � �y � (1 � �)Px >=< x � Px � �(y � Px); x �
Px� �(y � Px) >
= kx� Pxk2 + �2 ky � Pxk2 + 2Re < x � Px; �(Px � y) > : For � su¤-

ciently small this last expression is less than kx� Pxk2 and this contradicts the
de�nition of Px:
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Remark: The de�nition only says kx� yk2 � kx� Pxk2 8y 2 C: It is inter-
esting to note that there is always a lower bound for the di¤erence kx� yk2 �
kx� Pxk2 :

Problem 116

Let fx 2 Rn : kxk = 1g �
n[
j=1

�
B(xj ; rj) where

�
B(xj ; rj) is the closed ball

with center xj and radius rj : Show that 0 2
�
B(xj ; rj) for some j: Show that the

conclusion is false if the number of closed balls is allowed to exceed n:

For the counter example take n = 2 and consider the closed balls with centers

at 2;�2; 2i;�2i and radius 32 each. For the �rst part assume that 0 =2
�
B(x1; r1):

There is an (n�1)� dimensional subspaceMn�1 which is disjoint from
�
B(xj ; rj):

We have fx 2 Mn�1 : kxk = 1g �
n[
j=2

�
B(xj ; rj): If 0 =2

�
B(x1; r1) there is an

(n�2)� dimensional subspaceMn�2 ofMn�1 disjoint from
�
B(x2; r2) and so on.

If none of the given closed balls contains 0 then can repeat this argument until we

get a 1� dimensional subspace M1 such that fx 2 M1 : kxk = 1g �
�
B(xn; rn):

However
�
B(xn; rn) is a convex set and if x 2 M1 with kxk = 1 then this ball

contains both x and �x; hence it conatins 0 = x+(�x)
2 :

Problem 117

Let C be a closed convex set in a Hilbert space H: Let P (x) be the point of C
closest to x: Show that kP (x)� P (y)k � kx� yk 8x; y 2 H: [See also Problem
118 below].

If y 2 C we claim that Q(x) = P (x) where Q(x) is the point on the line
segment [y; P (x)] that is closest to x: (Since the line segment is a closed convex
set Q(x) exists). Assuming this claim we complete the proof as follows: let
x1; x2 2 H: Apply the claim with x = x2; y = P (x2) to conclude that Q1(x2) =
P (x2) where Q1 corresponds to the closed convex set [P (x2); P (x1)]: By sym-
metry Q1(x1) = P (x1): [ We note that [P (x2); P (x1)] = [P (x1); P (x2)]!]. Now
Re < x1�P (x1); P (x2)�P (x1) >� 0 and Re < x2�P (x2); P (x1)�P (x2) >� 0:
[ This was proved in Problem 115 above]. Rewrite the second inequality as
Re < P (x2)�x2; P (x2)�P (x1) >� 0 and add these two inequalities to get Re <
x1�x2+P (x2)�P (x1); P (x2)�P (x1) >� 0: Thus Re < x1�x2; P (x2)�P (x1) >
+ kP (x2)� P (x1)k2 � 0: Finally this gives kP (x2)� P (x1)k2 � �Re < x1 �
x2; P (x2) � P (x1) >� kx2 � x1k kP (x2)� P (x1)k completing the proof. We
now prove the claim. If the claim is false there exist � 2 [0; 1] such that
kx� f�y + (1� �)P (x)gk < kx� P (x)k : This can be written as

x+ 1��
� fx� P (x)g � y

 <
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 1
�x�

1
�P (x)

 = x+ 1��
� fx� P (x)g � P (x)

 : This would be a contradic-
tion if we knew that P (x) and P (x + 1��

� fx � P (x)g) were equal. To com-
plete the proof we prove this last fact: (geometric meaning: the projec-
tion of x on C is also the projection on C of any point on the ray from
x in the directioon of x � P (x)). Suppose this is false. There exists y 2
C such that

x+ 1��
� fx� P (x)g � y

 < x+ 1��
� fx� P (x)g � P (x)

 : This
gives kx� (1� �)P (x)� �yk < kx� (1� �)P (x)� �P (x)k = kx� P (x)k : This
is clearly a contradiction.

Problem 118

In Problem 117 show that kP (x)� P (y)k < kx� yk unless P (x) � P (y) =
x� y:

Suppose kP (x)� P (y)k = kx� yk : From the argument used in Problem 117
we get Re < x�y+P (y)�P (x); P (y)�P (x) >= 0: This gives kP (x)� P (y)k2 =
2Re < x�y; P (x)�P (y) > : Hence kfP (x)� P (y)g � (x� y)k2 = 2 kx� yk2�
2Re < P (x)�P (y); x� y >= 2 kx� yk2� 2 kx� yk2 = 0: Thus P (x)�P (y) =
x� y:

Problem 119

Let f : [0;1) ! [0;1) be non-decreasing with
1Z
1

1
f(x)dx = 1: Show that

1Z
1

1
x log(f(x))dx =1: Can we also assert that

1Z
1

1
x log(f(x)) log(log(f(x)))dx =1?

If

1Z
1

1
x log(f(x))dx <1 we get

1Z
0

1
log(f(ey))dy <1:Hence

t=2
log(f(et)) �

tZ
t=2

1
log(f(ey))dy !

0 as t!1: This gives t=2
log(f(et)) <

1
4 and hence

et

f(et) < e�t for large t: But then
1Z
1

et

f(et)dt < 1 which means

1Z
1

1
f(x)dx < 1; a contradiction. We now show

that

1Z
1

1
x log(f(x)) log(log(f(x)))dx can be �nite. Let kn = e(e

(en)); n = 0; 1; 2:: and

f(x) = kn on [kn�1; kn) for all n � 1: We see that
1Z
ee

1
x log(f(x)) log(log(f(x)))dx <X

e�n <1:

Problem 120
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a) Let (X; d) be a compact metric space and T : X ! X be onto. If
d(Tx; Ty) � d(x; y) 8x; y prove that d(Tx; Ty) = d(x; y) 8x; y:
b) Let (X; d) be a compact metric space and a continuous map T : X ! X

satisfy d(Tx; Ty) � d(x; y) 8x; y: Prove that the conclusion of part a) holds.
Remark: several improvements of these results are given in the next few

problems. See also Problem 423.

For each n; Tn (the n � th iterate of T ) is onto. Given x; y we can �nd
xn and yn such that Tn(xn) = x and Tn(yn) = y: By compactness we can
�nd n1 < n2 < ::: such that fxkkg converges to some element u and fykkg
converges to some element v: Note that d(Tnu; Tnv) is increasing in n: Now,
d(x; Tnk(u)) = d(Tnk(xnk); T

nk(u)) � d(xnk ; u)! 0: Thus Tnk(u)! x as k !
1: Similarly Tnk(v)! y as k !1: It follows that d(Tnk(u); Tnk(v))! d(x; y):
Monotonicity of the sequence fd(Tnu; Tnv)g shows that d(Tn(u); Tn(v)) !
d(x; y): In particular d(T (Tnk(u)); T (Tnk(v))) ! d(x; y): Therefore d(x; y) =
lim d(T (Tnk(u)); T (Tnk(v))) = d(Tx; Ty) because Tnk(u) ! x as k ! 1 and
Tnk(v)! y and T is continuous.
b) Claim: T (X) = X: If not there is an element y in XnT (X): Since T (X)

is compact, � � d(y; T (X)) > 0: Now � � d(y; T k(y) � d(Tny; Tn+ky) for all
positive integers n and k: It follows that fTnyg has no convergent subsequence
contradicting compactness of X: Thus T is onto and we can apply part a) to
T�1 to complete the proof.

Problem 121

Let (X; d) be a compact metric space and T : X ! X satisfy d(Tx; Ty) �
d(x; y) for all x; y 2 X: Then T is an isometry of X onto itself. [ Thus continuity
of T need not be assumed in previous problem]
[See also Problem 234 below]

Let x0; y0 2 X and � > 0: Since X can be covered by a �nite number of
open balls of any given radius there is an open ball of radius �=4 containing
in�nitely many of the points Tnx0 and an open ball of radius �=4 containing
in�nitely many of the points Tny0: Let these balls be B(u; �=4) and B(v; �=4):
Let n1 < n2 < ::: with Tnkx0 2 B(u; �=4) and Tnky0 2 B(v; �=4) 8k � 1: Let
k � l: Then d(Tnkx0; Tnlx0) � d(Tnkx0; u) + d(T

nlx0; u) < �=2 and (similarly)
d(Tnky0; T

nly0) < �=2. Hence d(x0; Tnl�nkx0) � d(Tnkx0; T
nkTnl�nkx0) <

�=2 and (similarly) d(y0; Tnl�nky0) < �=2: Thus, d(Tx0; T y0) � d(Tnl�nkx0; T
nl�nky0) �

�=2 + d(x0; y0) + �=2: Since x0; y0 2 X and � > 0 are arbitrary we see that T is
an isometry. It remains to show that T is onto. The sets X;T (X); T 2(X); ::: are
all compact and this sequence is decreasing. The sequence has �nite intersection

property and hence X1 =
1\
n=0

Tn(X) is non-empty. Note that T maps X1 into

itself. In fact, T (X1) = X1: [ Since T is an isometry it is one-to-one]. Let
X� = fx 2 X : d(x;X1) � �g for each � > 0: X� is closed. Suppose X� 6= ;:
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Then X� ; T (X� ); T
2(X� ); ::: is a decreasing sequence of compact sets with �nite

intersection property. Hence there is a point w in the intersection X�;1 of these
sets. But X�;1 � X� \ X1: This is a contradiction because w 2 X� and so
d(w;X1) � � whereas d(w;X1) = 0: This proves that X� = ; for every � > 0
which means d(x;X1) = 0 for all x 2 X: Thus X = X1 � T (X) and T is onto.

Problem 122

Find an error in the following proof given in Amercan Math.
Monthly, vol. 98, no. 7, 1991 (p. 664).
Let X be a compact metric space and T : X ! X be any map with

inf
n�1

d(Tnx; Tny) > 0 whenever x 6= y: Show that T (X) = X: Solution: let

D(x; y) = inf
n�0

d(Tnx; Tny) where T 0 = I: D is a metric and D � d: It follows by

compactness ofX that the identity map i : (X; d)! (X;D) is a homeomorphism
and (X;D) is a compact metric space. By de�nition D(Tx; Ty) � D(x; y): By
Problem 121 above T is an isometry of X onto itself.

Why isD a metric? Minimum of two metrics need not be a metric. Example:
X = f0; 1; 2g; d the usual metric and D(0; 1) = :5; D(1; 2) = 1:5; D(0; 2) = 2:
Note that if d0 = minfd;Dg then d0(0; 1) = :5; d0(0; 2) = 2 and d0(1; 2) = 1 so
d0(0; 2) > d0(0; 1) + d0(1; 2): [ It is not clear if the statement above is true].

Problem 123
Is the product of two derivatives on R necessarily a derivative?

No! Let �(x) = x sin( 1x ) if x 6= 0 and �(0) = 0: Then (x�(x))
0 = x�0(x) +

�(x) = �(x) � �1(x) + �(x) where �1(x) = cos( 1x ) if x 6= 0 and �1(0) = 0: It
follows that 2�(x)��1(x) = (x�(x))0: Being continuous � is a derivative and so
is �1 (because 2�(x)� �1(x) is a derivative). Let f

0 = �1: We claim that �21 is
not a derivatine: suppose g0 = �21: Then (g(x) � f(x2 ))

0 = �21(x) � 1
2�1(x=2) =

cos2( 1x )�
1
2 cos(

2
x ) =

1
2 if x 6= 0 and 0 if x = 0: This is absurd: g(x)� f(

x
2 ) has

to be of the type x+ a on (0;1) and x+ b on (�1; 0) and a = b by continuity
at 0; but thenthe derivative at 0 is 1; not 0!

Problem124

Let p; q 2 (1;1); 1p +
1
q = 1 and f; g be non-negative continuous functions

on R with compact support. Show that
Z
sup
y
ff(x� y)g(y)gdx � kfkp kgkq :

If kfk1 = f(a) then sup
y
ff(x � y)g(y)g � f(a)g(x � a) = kfk1 g(x � a)

and hence
Z
sup
y
ff(x� y)g(y)gdx � kfk1 kgk1 : Similarly if g(b) = kgk1 then

sup
y
ff(x� y)g(y)g � g(b)f(x� b) = kgk1 f(x� b) so

Z
sup
y
ff(x� y)g(y)gdx �
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kgk1 kfk1 : Thus
Z
sup
y
ff(x�y)g(y)gdx � maxfkfk1 kgk1 ; kgk1 kfk1g: HenceZ

sup
y
ff(x � y)g(y)gdx � kfk1=q1 kgk1=q1 kgk1=p1 kfk1=p1 : Now kgk1=q1 kgk1=p1 =

(kgkq�11 kgk1)1=q � (

Z
gq)1=q = kgkq : Similarly kfk

1=q
1 kfk1=p1 � kfkp and the

proof is complete.

Problem 125

a) Find all positive numbers � such that there is a positive C1 function f
on (0;1) with f 0(x) � a[f(x)]� for all x su¢ ciently large for some a 2 (0;1):
b) Does there exist a positive C1 function f on (0;1) with f 0(x) � af(f(x))

for all x su¢ ciently large for some a 2 (0;1)?

a) For � � 1 such a function exists: take f(x) = ex: Let � > 1: There is a
positive integer n such that n < � � n + 1: We have f 0(x)

[f(x)]n � a[f(x)]��n for

x � T (say) and so [f(x)]1�n

1�n � [f(T )]1�n

1�n + a

xZ
T

[f(t)]��ndt for x > T: Note that

f 0(x) > 0 and so f is increasing on (T;1): Thus f(x) � f(T ) and

xZ
T

[f(t)]��ndt

� [f(T )]��n(x�T ): Finallt this gives [f(x)]
1�n

1�n � [f(T )]1�n

1�n +a[f(T )]��n(x�T ):
In other words f [f(T )]

1�n

1�n + a[f(T )]��n(x� T )g[f(x)]n�1 is bounded. This is a
contradiction because f 0(x) � a[f(T )]� which implies (by Mean Value Theorem)
that f(x)!1 as x!1:
b) The answer is no. As in a) we get f 0(x) � af(f(T )) for x � T which

implies f(x) ! 1 and hence f 0(x) ! 1: It follows [by Mean Value Theorem]
that f(x) > x+ 1

a for some x: By Mean Value Theorem applied to [x; f(x)] we
get f(f(x)) � f(x) = f 0(�)[f(x) � x] for some � 2 (x; f(x)): Thus f(f(x)) �
f(x)+ af(f(x))[f(x)� x]: This says f(x)+ f(f(x))fa[f(x)� x]� 1g � 0 which
is absurd.

Problem 126

Let an > 0 and
1X
n=1

an log(1+
1
an
) <1: Show that

1X
n=1

an
kx�bnkk

<1 almost

everywhere for any sequence fbng � Rk: [ kk is the norm in Rk].

Using the fact that an log(1 + 1
an
) ! 0 we see that 0 is the only possible

limit point of fang in [0;1]: Thus an ! 0: Since log(1 + 1
an
) ! 1 it follows

that
1X
n=1

an < 1: Let 0 < R < 1: We prove that
1X
n=1

an
kx�bnkk

< 1 almost
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everywhere on BR � fx 2 Rk : kxk � Rg: This would �nish the proof since

R is arbitrary. By deleting the �rst few terms of the series
1X
n=1

1
kx�bnkk

we

may assume that an � 2R 8n: Also we can split the sum
1X
n=1

an
kx�bnkk

into

two parts: the one in which kbnk � 2R and the one in which kbnk > 2R:

In the second sum we have kx� bnkk > (2R � R)k and an
kx�bnkk

< an
Rk : Since

1X
n=1

an < 1 the second sum is �nite. In the �rst sum kbnk � 2R for all n: We

now de�ne Yn = 1
kX�bnkk

if kx� bnkk � an and Yn = 0 otherwise where X

is uniformly distributed over the ball BR: If we prove that
X

anYn < 1 a.s.

we are done because Yn = 1
kX�bnkk

eventually w.p. 1. [ We use Borel-Cantelli

Lemma to justify this. We have to show that
X

PfkX � bnkk < ang <1: But

PfkX � bnkk < ang � PfX�1(B(bn; a
1=k
n ))g � mk(B(bn;a

1=k
n )

mk(BR)
where mk is k�

dimensional Lebesgue measure. Thus PfkX � bnkk < ang � an
Rk ]. Now EYn =Z

an�kx�bnkk

1
kx�bnkk

dmk=cR
k (where c is the volume of the unit ball in Rk. Not-

ing that kx� bnk � 3R we see that EYn �
Z

an�kukk�(3R)k

1
kukk dmk(u)=cR

k: Us-

ing spherical coordinates in Rk we see that EYn � C

3RZ
a
1=k
n

1
tk
tk�1dt = C[log(3R)�

log(a
1=k
n )] for some constant C: It remains only to see that

1X
n=1

an log
3R

a
1=k
n

<1:

Since log 3R

a
1=k
n

= log(3R) + 1
k log(

1
an
) < log(3R) + 1

k log(1 +
1
an
) the proof is

complete.

Problem 127

Let f : R! R be a function such that f � g is Riemann integrable on [0; 1]
whenever g : [0; 1]! R is continuous. Show that f is continuous on R:

Let C be a Cantor-like set of positive measure in [0; 1]: Let h : [0; 1] ! R
be de�ned by h(x) = d(x;C) 8x 2 R: Let a 2 R and g(x) = a + h(x): By
hypothesis f � g is Riemann integrable on [0; 1]: Hence it is continuous a.e. In
particular there is a point c 2 Cnf0; 1g such that f � g is continuous at c: Let
� > 0 and choose � > 0 such that j(f � g)(x)� (f � g)(c)j < � if jx� cj < �
(and c + � < 1): Let d 2 (c; c + �)nC and y 2 [g(c); g(d)] � [a; a + h(d)]: Note
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that such a d exists because C0 = ;; also h(d) > 0: Since g is continuous, g
must attain the value y at some point x between c and d: Thus c < x < d and
g(x) = y: Now jf(y)� f(a)j = jf(y)� f(a+ h(c))j = jf(g(x))� f(g(c))j < �
since jx� cj < d� c < �: We have proved that given any real number a there is
a right-hand interval [a; a + h(d)] on which jf(:)� f(a)j < �: This proves right
continuity of f: Applying this to f(�x) we see that f is also left-continuous at
each point.

Problem 128

Is the set of all n � n invertible matrices dense in the space of all n � n
matrices? Is the space of all invertible operators on a Hilbert space dense in the
space of all operators on that space?

If A is any n � n matrix then we can �nd �n # 0 such that A + �nI is
invertible for each n: Hence the answer to the �rst question is �yes�. The answer
to the second question is �no�. Let H = l2 and Tfxng = f0; x1; x2; :::g: We
claim that no operator S on H satisfying kT � Sk < 1 is invertible. Indeed, if
we de�ne T1 by T1(fx1; x2; :::g) = fx2; x3; ::g: Then T1T = I so kI � T1Sk =
kT1T � T1Sk � kT � Sk < 1 implying that T1S is invertible. This implies that
T1 itself is invertible which is obviously false.

Problem 129

Let A be any n� n matrix. For any positive integer k Show that there is a
unique n� n matrix B such that B(B�B)k = A:

Existence is an easy consequence of the fact that we can factor A as UP
where U is unitary and P is non-negative de�nite. [ See e.g. Linear Algebra
by Ho¤man and Kunze, p. 342. U is not unique in general, is it is interesting
that B is unique]. We de�ne B as UQ where (2k+1)� th root of P: Then Q is
non-negative de�nite and Q2k+1 = P: Thus B(B�B)k = UQ(Q�U�UQ)k =
UQ2k+1 = UP = A: This proves existence. Suppose B(B�B)k = A and
C(C�C)k = A: Then A�A = (B�B)kB�B(B�B)k = (B�B)2k+1: Also A�A =
(C�C)2k+1: It follows that B�B = C�C: Now we see easily that ker(B) =
ker(C) = ker(B�B) = ker(C�C) = M (say): Thus B and C agree on M: They
also agree at any eigen vector of B�B = C�C corresponding to a non-zero
eigem value: B�Bx = �x; � 6= 0; x 6= 0 implies Ax = B(B�B)kx = B�kx = �kx
and, similarly, Ax = �kCx so Bx = Cx: It follows now that B and C agree
everywhere.

Probem 130

Let f : R! R: Then f is continuous at 0 if and only if f(xn)! 0 wheneve
xn ! 0: Can di¤erentiability of f be characterized by the condition

X
f(xn)

converges whenever
X

xn converges?
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We prove that if the stated condition holds then f is di¤erentiable at 0: The
example f(x) = x2; xn =

(�1)np
n

show that the converse is false. Problem 131
below gives more information on this]. Let us say that f is CP (convergence
preserving) if

X
f(xn) converges whenever

X
xn converges. Note that if f and

g are CP then so are af + bg and f �g (for a; b 2 R): Claim : f CP implies there
existsM 2 (0;1) and � > 0 such that f(x) < Mx whenever 0 < x < �: If this is
false we can �nd x0ns such that 0 < xn <

1
n2 and f(xn) � nxn 8n: Let kn be the

least positive integer � 1
n2xn

: Consider the series x1+x1+:::+x1(k1 terms)+x2+
x2+ :::+x2(k2 terms)+ :::. The series converges because knxn < (1+ 1

n2xn
)xn <

2
n2 : The series f(x1)+f(x1)+:::+f(x1)(k1 terms)+f(x2)+f(x2)+:::+f(x2)(k2
terms) does not converge because knf(xn) � nxnkn � 1

n : This proves the claim.
To prove that f is di¤erentiable at 0 we �rst show that D�f(0) � D+f(0):
[In this notation + and � signs stand for limits from the right and left and
subscript/superscript stand for limit inferior and limit superior. ThusD�f(0) =

lim inf
h"0

f(h)�f(0)
h : Note that by taking xn = 0 for all n in the hypothesis we get

f(0) = 0]. If possible let D�f(x) < D+f(0): Let D�f(x) < s < t < D+f(0):

Let cn # 0; 0 < cn < 1
2n and f(cn)

cn
> t for all n: Let dn " 0;� 1

2n < dn < 0

and f(dn)
dn

< s for all n: We may suppose c1 > �d1 > c2 > �d2::::. Let kn be
the least integer with kncn > 1

n and ln the smallest integer with lndn < � 1
n :

Consider the series
X

xn where the �rst k1 terms are c1; the next l1 are d1;

the next k2 are c2; the next l2 are d2 and so on.
X

f(xn) is not convergent

because tkncn + slndn = (t � s)kncn + s(kncn + lndn),
X

kncn diverges andX
(kncn + lndn) converges. Since

X
xn converges and

X
f(xn) diverges we

have proved thatD�f(0) � D+f(0): Replacing f(x) by f(�x) we getD+f(0) �
D�f(0): Hence D+f(0) � D�f(0) � D�f(0) � D+f(0) � D+f(0) proving
that f 0(0) exists. [Note that the claim above proves that D+f(0) < 1: Hence
f 0(0) <1: Changing f to �f we see that f 0(0) > �1].

Problem 131

Find a necessary and su¢ cient condition for f to be CP. [See Problem 130
for de�nition of CP].

The condition is f(x) = �x for all x in some neighbourhood of 0:
By considering f(x)� f 0(0)x we may reduce the proof to the case f 0(0) = 0:

We have to show that f � 0 in a neighbourhood of 0: Claim: given A;B > 0 and
� > 0 we can �nd a positive integer k and � > 0 such that � < �;A < k� < A+ �
and k jf(�)j < B: We can also �nd a positive integer k and � > 0 such that
�� < �;A < �k� < A+� and k jf(��)j < B: To see this assume � < 1 and choose
� such that jf(�)j� < B

A+1 and � < �: The interval (A� ;
A+�
� ) contains an integer k

and k jf(�)j < A+�
� jf(�)j < B: For the second oart pick k in (�A+�

� ;�A
� ) where

jf(��)j
� < B

A+1 : This proves the claim. To show that f � 0 in a neighbourhood
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of 0; suppose this is false so that we can �nd y0ns with 0 < f(yn) < yn <
1
2n :

[ in order that yn and f(yn) can both be takeb to be positive we may have
tp replace f(x) by f(�x);�f(x) or �f(�x)]. Let mn be the least integer with
mnf(yn) >

1
n : Let �n; kn be such that �n <

1
2n ;mnf(yn) < �kn�n < mnf(yn)+

1
2n and kn jf(��n)j <

1
n2 : Look at the series whose terms are y1; y1; :::; y1(m1

times);��1;��1; :::;��1(k1 times); y2; y2; :::; y2(m2 times);��2;��2; :::;��2(k2
times); :::. This series converges but the the series whose terms are images
under f of the terms of this series diverges.

Problem 132

Let f : (0; 1) ! (0; 1) be a continuous function such that for any x 2 (0; 1)
there is an integer n such that f(n)(x) = x where f(1) = f and f(n) = f � f(n�1)
for n � 2: Show that f(x) = x 8x 2 (0; 1): Is the result true of (0; 1) is replaced
by [0; 1]?

Clearly, f is onto. If f(x) = f(y) then choose n;m with f(n)(x) = x and
f(m)(y) = y: We have f(nm)(x) = x and f(nm)(y) = y and this implies x = y:
Thus f is a continuous bijection of (0; 1): Hence f is strictly monotonic. If it
is increasing and f(x) > x for some x then (for suitable n) x = f(n)(x) > x
a contradiction. Similarly if f(x) < x then x = f(n)(x) < x a contradiction
again. Thus, if f is increasing then it must be the identity. Now assume
that f is strictly decreasing. Suppose f(f(x)) > x and f(n)(x) = x: Then
f(2n)(x) > x by monotonicity and iteration of f(f(x)) > x: This contradicts the
fact that f(2n)(x) = x: Similarly f(f(x)) < x leads to a contradiction. Hence
f � f = f: We have f(x) > x implies f(f(x)) < f(x) and f(x) < x implies
f(f(x)) > f(x) = 0 both of which contradict f � f = f: Thus f is the identity
function. We cannot draw the same conclusion when (0; 1) is replaced by [0; 1]:
For example f : [0; 1] ! [0; 1] de�ned by f(x) = 1 � x shows that f need not
be the identity. However, the proof above does show that f � f = f in this case
also.

Problem 133

a) Let f : f0; 1; 2:::g ! f0; 1; 2:::g satisfy f(m2 + n2) = f2(m) + f2(n)
8m;n � 0: Show that either f(n) = 0 for all n or f(n) = n for all n
b) Let f : [0;1)! [0;1) satisfy f(x2 + y2) = f2(x) + f2(y) 8x; y � 0: If f

is continuous show that f � 0 or f � 1
2 or f(x) = x for all x:

a) We have f(0) = 2f2(0): Since f(0) is an integer we get f(0) = 0: Next
f(1) = f2(1) + f2(0) so f(1) = 0 or 1: If f(1) = 1 we prove that f(n) = n for
all. A similar argument shows that if f(1) = 0 then f(n) = 0 for all n: So let
f(1) = 1: Then f(2) = f2(1) + f2(1) = 2: Also f(5) = f2(2) + f2(1) = 5 and
f(4) = f2(2)+f2(0) = 4: Since 32+42 = 52 we get f2(3)+f2(4) = f2(5)+f2(0)
and this gives f2(3) = 25 � 16 = 9 so f(3) = 3: 72 + 12 = 52 + 52 we get
f2(7) + f2(1) = f2(5) + f2(5) and this gives f2(7) = 49 and f(7) = 7: Clearly
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f(9) = f(32) + f(02) = f2(3) + 0 = 9: f(10) = f(32 + 12) = f2(3) + f2(1) = 10
and f(8) = f(22 + 22) = f2(2) + f2(2) = 8: The equation 62 + 82 = 102 gives
f(6) = 6: Thus f(n) = n for n � 10: The identity (2k + 1)2 + (k � 2)2 =
(2k � 1)2 + (k + 2)2 gives f(2k + 1) = 2k + 1 if we assume that f(m) = m for
m < n: Similarly (2k+2)2+(k�4)2 = (2k�2)2+(k+4)2 gives f(2k+2) = 2k+2
provided k > 2 if we assume that f(m) = m for m < n: We have proved that
f(n) = n for all n:
b) We have f(0) = 2f2(0) so f(0) = 0 or f(0) = 1

2 : First let f(0) =
0: Since f(1) = f2(1) + f2(0) we get f(1) = 0 or 1: We also have f(x2) =
f(x2 + 02) = f2(x) + 0 so f(x2 + y2) = f(x2) + f(y2) 8x; y � 0: This implies
that f is additive; a simple argument shows f(rx) = rf(x) for every positive
rational r and continuity yields f(xy) = yf(x) 8x; y � 0: Putting x = 1 we
get f(y) = y 8y � 0 or f(y) = 0 8y � 0: Now let f(0) = 1

2 : Then f(x
2) =

f(x2 + 02) = f2(x) + 1
4 so f(x

2 + y2) = f(x2)� 1
4 + f(y2)� 1

4 8x; y � 0: This
means f(x2 + y2) � 1

2 = f(x2) � 1
2 + f(y2) � 1

2 8x; y � 0: As above it follows
that the additive function f(t)� 1

2 is of the type ct for some constant c and the
only possibility is c = 0 so f(x) = 1

2 for all x:

Problem 134

Let C be a bounded subset of V � Rn or Cn such that for each x 2 V there
is a unique point Px of C which is closest to it. Show that C is closed and
convex.

It is trivial to see that C is closed: if fcng � C and cn ! x then kx� Pxk �
kx� cnk ! 0 so x = Px 2 C: Convexity of C requires a lengthy argument and
we divide the proof into the steps S1-S4 as follows:
S1. If x 2 V; � � 0 and x� = x+�(x�Px) then Px� = Px: (Geometrically

x� is a point on the ray from x in the direction of x� Px: S1 says the point of
C closest to any point on this ray is Px).
S2. If x 2 V and y 2 C then the line segment [y; Px] is closed and convex

and if Qz is the point of [y; Px] closest to z (which exists for any z 2 V by a
standard result in Functional Analysis) then Px = Qx:
S3.kPx� Pyk � kx� yk 8x; y 2 V:
S4. C is convex.
We now proceed backwards: suppose we have proved S1-S3. Suppose C is

not convex. Since C is closed we can �nd x; y 2 C such that u � x+y
2 =2 C: We

claim that either kx� Puk >
x�y

2

 or ky � Puk > x�y
2

 : In the contrary
case kx� yk � kx� Puk+kPu� yk �

x�y
2

+x�y2  = kx� yk : This implies
that kx� Puk =

x�y
2

 ; kPu� yk = x�y2  and that x � Pu = t(Pu � y) for
some t � 0: Taking norms on both sides we get t = 1 so Pu = u contradicting
the fact that u =2 C: Suppose, for de�niteness, that kx� Puk >

x�y
2

 : Since
x; y 2 C we get kPx� Puk = kx� Puk >

x�y
2

 = kx� uk contradicting S3.
Next we prove S3 assuming that S1 and S2 hold. Let Q[u;v] be the projection

onto the line segment [u; v]: (This means Q[u;v]z is the point of [a; b] closest to
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z for any z 2 V ). By S2 with y replaced by Py; Px = Q[Py;Px]x: Similarly
Py = Q[Px;Py]y: Since the line segments [Px; Py] and [Py; Px] are identical
this gives Px = Qx and Py = Qy where Q = Q[Px;Py]: To prove S3 we only
have to show that kQx�Qyk � kx� yk 8x; y 2 V: The crucial point here is
that Q is projection on a convex set. We note that for 0 < t < 1; kx�Qxk2 �
kx� ftQx+ (1� t)Qygk2 = kx�Qxk2+(1� t)2d+2(1� t)Re < x�Qx;Qx�
Qy > : This gives 0 � (1 � t) kQx�Qyk2 + 2Re < x � Qx;Qx � Qy > :
Letting t " 1 we get Re < x � Qx;Qx � Qy >� 0: Interchanging x and y we
get Re < y � Qy;Qy � Qx >� 0: Equivalently, Re < Qy � y;Qx � Qy >� 0:
Adding thes two inequalities we get Re < x� y +Qy �Qx;Qx�Qy >� 0: In
other words, kQx�Qyk2 � Re < x � y;Qx � Qy >� kx� yk kQx�Qyk and
kQx�Qyk � kx� yk :
Proof of S2 using S1: If S2 fails then 9 x 2 V; y 2 C such that Px 6=

Qx where Q is the projection on [y; Px]: There exists t 2 (0; 1) such that
kx� xtk < kx� Pxk where xt = ty+(1�t)Px: Thus

x+ 1�t
t (x� Px)� y

 < 1
tx�

1
tPx

 = x+ 1�t
t (x� Px)� Px

 : This is a contradiction.
Proof of S1.
Suppose Px� 6= Px for some � � 0 where x� = x + �(x � Px): We claim

that Pxt = Px for some t � 0 implies that Pxs = Px for 0 � s < t: To see
this we write xs as (1 � �)xt + �Px where � = t�s

1+t : Note that 0 < � < 1: If
Pxs 6= Px(= Pxt) then kxs � Pxk > kxs � vk for some v 2 C: But kxt � vk �
kxt � xsk + kxs � vk < kxt � xsk + kxs � Pxk = kxt � (1� �)xt � �Pxk +
k(1� �)xt + �Px� Pxk
= � kxt � Pxk + (1 � �) kxt � Pxk = kxt � Pxk which contradicts the fact

that Pxt = Px:
Let � = supft � 0 : Pxt = Pxg: If � = 1 then Pxr = Px for all r but

Px� 6= Px. Hence � < 1: Clearly Pxs = Px for s < � and Pxs 6= Px for
s > �: We now prove that Px� = Px: For � < �; Px� = Px. Hence, for any
w 2 C; kx� � Pxk � kx� � wk : Letting � " � we get kx� � Pxk � kx� � wk :
This proves that Px� = Px if and only if � � �: Now let D be a closed ball
with center x� (say with radius r) which is disjoint from C: For z 2 D let
F (z) = x� +

r
kx��Pzk [x� � Pz]: If we prove that P is continuous then (since

kx� � Pzk � r); we see that F is continuous on D. Also, kx� � F (z)k = r
so F maps D into its boundary. By Schauder�s Fixed Point Theorem there
is a point z in D with F (z) = z which gives x� + r

kx��Pzk [x� � Pz] = z

and hence x� =
kx��Pzk
kx��Pzk+r z +

r
kx��Pzk+rPz: This implies that Px� = Pz;

so Pz = Px. [We proved above that Pxt = Px for some t � 0 implies that
Pxs = Px for 0 � s < t:: This proof shows that Px� = Pz]. We now get
x� +

r
kx��Pzk [x� � Px] = z which can be written as z = x� with � > �:

This contradicts the de�nition of �: Remains to show that P is continuous. If
P is not continuous we can �nd fxng converging to x and � > 0 such that
kPxn � Pxk � � 8n: Now d(x;C) � kx� Pxnk � kx� xnk + kxn � Pxnk =
kx� xnk + d(xn; C) ! d(x;C): If y is a limit point of fPxng then we get
d(x;C) � d(x; y) � d(x;C) which implies that y = Px; contradicting the fact
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that kPxn � Pxk � � 8n:

Problem 135

In the literature there are two de�nitions of adjoint of an n � n matrix
A. According to one de�nition the conjugate transpose of a matrix is called the
adjoint. According to the other de�nition the (i; j) element of the adjoint matrix
is the co-factor of ai;j : the determinant of the matrix obtained by deleting the
i � th row and the j � th column. Find all matrices for which the de�nitions
lead to the same adjoint.

Let B be the adjoint according to the �rst de�nition and C according to
the second. As is well known CA = AC = (detA)I: If B = C then we get
BA = AB = (detA)I: Since AB is non-negative de�nite we see that detA � 0:
Note that if detA = 0 then kAxk2 =< BAx; x >= 0 for all x so A is the zero
matrix. Otherwise, detA > 0: Now, det(AB) = (detA)n det(I) and this gives
jdetAj2 = (detA)n: If n > 2 this (along with detA > 0) gives detA = 1 and so
AB = BA = I: Thus A is a unitary matrix with determinant 1: For n > 2 any
unitary matrix with determinant 1 satis�es B = C [ Indeed CA = AC = I and
BA = AB = I together imply B = C] and so does the zero matrix. It remains to

consider the case n = 2: If A =
�
a b
c d

�
then the condition is

�
d �b
�c a

�
= �

a
�
c

�
b

�
d

!
: This says c = �

�
b and d =

�
a: Thus A =

 
a b

�
�
b

�
a

!
with a and b

arbitrary. Any such 2� 2 matrix satis�es the condition B = C:

Problem 136

Let B be a bounded set in a Banach space X: Show that the following are
equivalent:
a) B is an open ball
b) for any two points x; y in B there is an open ball V contained in B and

containing x and y:

a) implies b): take V = B: Let b) hold. B is clearly open. Let R = supfr >
0 such that there is an open ball of radius r contained in Bg: Let rn " R
and Un = B(xn; rn) � B 8n: Let dnm be the diameter of Un [ Um: Claim:
dnm � rn+ rm+ kxn � xmk : To see this �rst assume xn 6= xm and consider the
points xn � �(xm � xn) and xm + �(xm � xn) where 0 < � < rn

kxn�xmk and 0 <
� < rm

kxn�xmk : These points belong to Un[Um and the distance between them is
j1 + �+ �j kxn � xmk : This number cannot exceed dnm: Let �! rn

kxn�xmk and

� ! rm
kxn�xmk to get

���1 + rn
kxn�xmk +

rm
kxn�xmk

��� kxn � xmk � dnm: This proves

the claim when xn 6= xm: The claim is trivial when xn = xm:
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Let �n > 0 and choose un; vn 2 Un [ Um with kun � vnk > rn + rm +
kxn � xmk � �n: Let Sn be an open ball such that un; vn 2 Sn and Sn � B:
Then radius of Sn cannot exceed R: Hence kun � vnk � 2R: Hence rn + rm +
kxn � xmk��n < 2R: Since rn " R we see that fxng is Cauchy. Let x = limxn:
We claim that B = B(x;R): Since ky � xk < R implies ky � xnk < rn for
n su¢ ciently large and since B(xn; rn) � B we get B(x;R) � B: Suppose
ky � xk > R: Then there is a point w in B(x;R)[� B] such that ky � wk > 2R:
[ Take w = x + t(x � y) where 2R

ky�xk � 1 < t < R
ky�xk ]. If y 2 B then there

is an open ball inside B containing y and w. This ball has radius at most R:
This contradicts the fact that ky � wk > 2R: Hence y =2 B: This proves that B
is contained in the closure of B(x;R): But B is open and hence B � B(x;R):

Problem 137

Show that any (complex) polynomial p whose degree is � n is the sum of
three polynomials whose zeros are all on the real line.

Let f(z) =
kX
j=1

cjz
j and g(z) =

kX
j=1

djz
j where p(z) =

kX
j=1

ajz
j and cj =

Re aj ; dj = Im aj : Note that k � n: Let C = maxffsup jf(x)j : �1 � x �
ng; fsup jg(x)j : �1 � x � ng: Let p0(z) = (1 + i)Mz(z � 1)(z � 2):::(z � n+ 1)
whereM > 4C: Note that the zeros of p0 are all real. Let p1(z) = f(z)�Mz(z�
1)(z� 2):::(z�n+1) and p2(z) = i[g(z)�Mz(z� 1)(z� 2):::(z�n+1)]: Then
p0 + p1 + p2 = f + ig = p: Now jMz(z � 1)(z � 2):::(z � n+ 1)j > C at the
points z = � 1

2 ;
1
2 ;

3
2 ; :::; n �

1
2 : The vaues of Mz(z � 1)(z � 2):::(z � n + 1) at

these points alternate in sign. Also jf(z)j � C and jg(z)j � C at these points.
It follows by intermediate value property that p1 and p2 both have one zeros
between any two successive points in f� 1

2 ;
1
2 ;

3
2 ; :::; n �

1
2g. These have to be

only zeros because the degrees of these polynomials are n:

Problem 138

Show that any (complex) polynomial p whose degree is � n is the sum of
three polynomials whose zeros are all on the unit cricle fz : jzj = 1g.

Let q(z) = (z � i)np( iz�11+iz ): Then q is a polynomial of degree at most n: By
Problem 137 we can write q as q0 + q1 + q2 where qj ; j = 0; 1; 2 are polynomials
of degree at most n whose roots are all real and whose sum is q: Let pj(z) =
i�n(z � 1)nqj( z+1

i(1�z) ); j = 0; 1; 2:

Remark: it can be shown that z2 + 4iz + 1 cannot be written as the sum of
two polynomials of degree at most 2 whose roots are all on the unit circle.

Problem 139

64



Let H be a Hilbert space and fx1; x2; :::; xng a �nite subset of H: Find

explicitly the point x in H for which
nX
j=1

kx� xjk2 is minimum.

The answer is x = x1+;x2+;:::+xn
n : To prove this consider Hn � H�H�:::�H

(n factors) as a Hilbert space in a natural way: < (x1; x2; :::; xn); (y1; y2; :::; yn) >=
nX
j=1

< xjyj > : Let C be the diagonal of Hn (C = f(x; x; :::; x) : x 2 Hg). There

is a point (x; x; :::; x) in C that is closest to (x1; x2; :::; xn): This point is char-
acterized by the fact that (x1 � x; x2 � x; :::; xn � x) is orthogonal to D: Hence
nX
j=1

< xj �x; y >= 0 for all y 2 H: This implies < x1+;x2+;:::+xn
n �x; y >= 0 for

all y 2 H: Thus x = x1+;x2+;:::+xn
n :

Problem 140

Let H and K be Hilbert spaces, y1; y2; :::; yn 2 K and A1; A2; :::; An be

bounded operators from H to K: Show that
nX
j=1

kAjx� yjk2 is minimized at

x = x0 if and only if
nX
j=1

A�jAjx0 =

nX
j=1

A�jyj : [ n = 1; A1 = I reduces this to

previous problem. If the positive operator
nX
j=1

A�jAj is invertible then there is a

unique x0].

De�ne T : H ! Kn be T (x) = (A1x;A2x; :::; Anx): The distance from
(y1; y2; :::; yn) to T (H) is minimized at T (x0) and hence (y1; y2; :::; yn)� Tx0 is

orthogonal to Tz for each z: This gives
nX
j=1

A�jAjx0 =
nX
j=1

A�jyj : Converse also

holds.

Problem 141

Consider the inequality
 x
kxk �

y
kyk

 � kx� yk where kxk � 1 and kyk � 1:
Is the inequality true in any inner product space space? Is it true in any normed
linear space?

Yes. If C the closed unit ball then
 x
kxk � x

 = kxk � 1 � kxk � kuk �

kx� uk whenever u 2 C; so x
kxk is a point of best approximation (i.e. projection)

of x onto C: In the case of an inner product space we have kxk�kuk < kx� uk
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unless x = �(u� x) for some � � 0 and this gives u = x
kxk : Now S3 in Problem

134 above completes the proof. Now consider the points ( 12 ;
3
2 ) and (1; 1) in

R2 under the norm k(x; y)k = maxfjxj ; jyjg: We have
 ( 12 ;

3
2 )

k( 12 ; 32 )k
� (1;1)

k(1;1)k

 =( 13 ; 1)� (1; 1) = 2
3 and

( 12 ; 32 )� k(1; 1)k = 1
2 : Thus the inequality does not

hold in general.
[Remark: if the inequality holds with y = �x then kxk � 1 and kyk � 1:

Also, a simple argument using triangle inequality show that if kxk � 1 ,kyk � 1
and either kxk � 2 or kyk � 2 then the inequality holds. In Studia Math. vol.
25, 1965, p.271-276 J J Scha¤er has shown that the inequality holds only in
Hilbert spaces and some two dimensional spaces. In particular the inequality
characterizes Hilbert spaces in spaces of dimension greater than 2].

Problem 142

Let k be a positive integer and A; b be n�n matrices with ABk�BkA = B:
Show that B is nilpotent.

We claim that AB2
jk �B2

jkA = 2jB(2
j�1)k+1 for all non-negative integers

j: For j = 0 this is the hypothesis. If it holds for j then we have B2
jkAB2

jk �
B2

j+1kA = 2jB(2
j+1�1)k+1 and AB2

j+1k�B2jkAB2jk = 2jB(2j+1�1)k+1: Adding
these two equations we get AB2

j+1k � B2
j+1kA = 2j+1B(2

j+1�1)k+1: The in-

duction argument is complete and the claim is proved. Now,
2jB(2j�1)k+1 �AB2jk+B2jkA � 2 kAkB2jk � 2 kAkB(2j�1)k+1Bk�1 : IfB(2j�1)k+1

is not the zero matrix then we get 2j � 2 kAk
Bk�1 for all j � 1 which is a

contradiction.

Problem 143

Let X be a n.l.s. and de�ne Sx as fy 2 X : kx+ yk2 = kxk2 + kyk2g: Show
that the following are equivalent:
i) X is an inner product space
ii) for any x 2 X; any y 2 Sx and any a 2 R we also have ay 2 Sx:

If i) holds then Sx = fy :< x; y >= 0g so ii) is obvious. Let ii) hold. We
claim that for any x 2 X and y 2 X there exists a real number a such that
x 2 Sax+y: Note that we can take a = 0 if x = 0: For x 6= 0 �xed consider
the continuous function f(t) = k(1 + t)x+ yk2�ktx+ yk2�kxk2 :We can also
write f(t) as (k(1 + t)x+ yk � ktx+ yk)(k(1 + t)x+ yk + ktx+ yk) � kxk2 : If
t > 0 then k(1 + t)x+ yk � ktx+ yk =

(1 + t)x+ 1
1+ty +

t
1+ty

� ktx+ yk =x+ 1
1+ty

+tx+ t
1+ty

�ktx+ yk and ���tx+ t
1+ty

� ktx+ yk��� �  1
1+ty

!
0 as t ! 1: Hence k(1 + t)x+ yk � ktx+ yk ! kxk as t ! 1: Of course,
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k(1 + t)x+ yk + ktx+ yk ! 1 as t ! 1: It follows that f(t) ! 1 as t !
1: For t < �1; k(1 + t)x+ yk � ktx+ yk = �

x+ 1
1+ty

 + tx+ t
1+ty

 �
ktx+ yk : Since

���tx+ t
1+ty

� ktx+ yk��� �  1
1+ty

 so we see that f(t)! �1
as t ! �1: Hence there is a real number t such that f(t) = 0: This means
k(1 + t)x+ yk2 = ktx+ yk2 + kxk2 : We can take a = t and so have proved our
claim. It now follows from ii) that �tx; (1� t)x and �(1 + t)x are all in Stx+y:
In other words, kyk2 = k�txk2 + ktx+ yk2 ;
k(1� t)x+ tx+ yk2 = k(1� t)xk2+ktx+ yk2 and k�(1 + t)x+ tx+ yk2 =

k�(1 + t)xk2 + ktx+ yk2 : Adding the last two equations we get kx+ yk2 +
kx� yk2 = (1� t)2 kxk2+(1+ t)2 kxk2+2 ktx+ yk2 : Since ktx+ yk2 = kyk2�
t2 kxk2 we get kx+ yk2+kx� yk2 = 2(1+t2) kxk2+2 kyk2�2t2 kxk2 = 2 kxk2+
2 kyk2 : Thus the parallelogram law holds in X:

Problem 144

Let X;Y; Z be random variables on a probability space with �X+�Y +Z d
=

U whenever the real numbers �; �;  satisfy �2 + �2 + 2 = 1; where U has

uniform distribution on (�1; 1): [ d= stands for "equal in distribution"]. Show
that X2 + Y 2 + Z2 = 1 almost surely.

It follows that the following random variables have uniform distribution on
(�1; 1) : X;Y; Z; X+Yp

2
; X�Yp

2
: Let V = X2 + Y 2 + Z2: We show that EV = 1

and EV 2 = 1: These two facts imply that V is almost surely constant and the
constant must be 1; thus completing the proof. It is obvious that EV = 1
because EU2 = 1

3 : The fact that EV
2 = 1 requires some computations: EX4 =

EY 4 = 1
5 ; 0 =

E(X+Y )4�E(X�Y )4
4 = 2EX3Y + 2EXY 3;

E(X+Y )4

4 = EX4+4EX3Y+6EX2Y 2+4EXY 3+EY 4

4 = EX4+6EX2Y 2+EY 4

4 =
1
5+6EX

2Y 2+ 1
5

4 :

Since X+Yp
2

d
= U we have E(X+Y )4

4 = 1
5 : Thus

1
5 =

1
5+6EX

2Y 2+ 1
5

4 which implies

EX2Y 2 = 1
15 : Similarly EZ

2Y 2 = 1
15 and EX

2Z2 = 1
15 : Now E(X2 + Y 2 +

Z2 � 1)2 = 3
5 + 1� 2(

1
3 )� 2(

1
3 )� 2(

1
3 ) + 2(

1
15 ) + 2(

1
15 ) + 2(

1
15 ) = 0:

Problem 145

Let f : [0; 1]! [0;1) be a continuously di¤erentiable function. Let L be the
length of the graph of f and A the area under the graph. Show that A+L > �=4:

Let g(x) = f(x) � f(1) + L: Then g(1) = L and the length of the graph

of g (which is

1Z
0

p
1 + (g0(x))2dx) is also L: We claim that

p
1 + (g0(x))2dx �

p
1� x2+xg0(x) and that equality holds if and only if (1�x2)(1+(g0(x))2) = 1:
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Once this is proved we get L �
1Z
0

p
1� x2dx +

1Z
0

xg0(x)dx = �=4 + g(1) �

1Z
0

g(x)dx = �=4 + g(1) �
1Z
0

f(x)dx + f(1) � L = �=4 � A + f(1) � �=4: If

equality holds here then f(1) = 0 and
p
1 + (g0(x))2dx �

p
1� x2 + xg0(x) for

all x which implies (1�x2)(1+(g0(x))2) = 1 for all x: This gives (g0(x))2 = x2

1�x2

8x: Equivalently(f 0(x))2 = x2

1�x2 8x: By continuity of the derivative we get
f 0(x) = xp

1�x2 for all x or f
0(x) = � xp

1�x2 for all x. Thus f(x) = c�
p
1� x2

where c is a constant (and � sign is independent of x). Since f(1) = 0 we must
have c = 0 and since f is given to be non-negative we have f(x) =

p
1� x2

8x: However, for this function A = �=4 so A + L > �=4: It follows that
A+L > �=4: To complete the proof we have to show that

p
1 + t �

p
1� s+

p
ts

for t � 0 and s 2 [0; 1] with equality if and only if (1+ t)(1� s) = 1: Note that
(
p
1 + t�

p
1� s)2 = (1�

p
(1 + t)(1� s))2+ st � st and equality holds if and

only if
p
(1 + t)(1� s) = 1 as required:

Problem 146

Show that a random variable X has a symmetric distribution if and only if
1Z
0

PfjX � tj � agdt = a for all a > 0:

Note that if F is the distribution function ofX then

1Z
0

[F (t+a)�F (t�a)]dt =

1Z
0

Pft� a < X � t+ agdt =
1Z
0

PfjX � tj � agdt for all a > 0 since F has only

countable number of discontinuities. Now
TZ
0

[F (t+a)�F (t�a)]dt =
T+aZ
a

F (t)dt�
T�aZ
�a

F (t)dt =

T+aZ
T�a

F (t)dt�
aZ

�a

F (t)dt!

2a �
aZ

�a

F (t)dt as T ! 1: It remains only to show that

aZ
�a

F (t)dt = a for all

a > 0 if and only if X has a symmetric distribution. If the equation holds
then di¤erentiation w.r.t a yields F (a)� F (�a) = 1 at all but countable many
points; in other words Pf�X < �ag = PfX � �ag at all but countable
many points. Clearly this implies that X d

= �X: Conversely if X d
= �X then

aZ
�a

F (t)dt =

0Z
�a

F (t)dt+

aZ
0

F (t)dt =

aZ
0

F (�t)dt+
aZ
0

F (t)dt =

aZ
0

[F (t)+F (�t)]dt =
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aZ
0

[1� PfX = tg]dt = a for all a > 0: More generally X has a distribution that

is symmetric about a real number b if and only if

1Z
b

PfjX � tj � agdt = a for

all a > 0: [ This follows by a simple change of variable].

Problem 147

Show that Rn cannot be written as the union of a family fDi : i 2 Ig of
closed balls such that Di \Dj = ; for i 6= j:

The interiors of the given disks contain points with rational coordinates.
Since these interiors are disjoint it follows that the given collection is countable.
Let this collection be re-written as fD1; D2; :::g: The intersection of any two of
these disks has atmost one point. Points that belong to two of thse disks form
a countable set, say fx1; x2; :::g: There is a line segment  with one end in D1

and the other end in D2 containing none of the points fxng: [ Fix y in D1 and
note that there are uncountable many line segments from this point to points

in D2 such that they have no common points except y]. Let A = n
1[
n=1

D0
n:

Since  contains a point on @D1 it follows that A 6= ;: A is clearly closed. Since

Rn =
1[
n=1

Dn and  intersects each Dn in at most two points we see that A is

at most countable. If A has an isolated point a then there is an open segment

J in  containing no other point of A so J �
1[
n=1

D0
n: By connectedness J � D0

n

for some n: But a 2 J and a 2 A � (
1[
n=1

D0
n)
c: This contradiction shows that

A is perfect, hence uncountable. Since A � Rn =
1[
n=1

Dn and A � (
1[
n=1

D0
n)
c

we see that every point of A is in the boundary of some Dn and belongs to :
The segment  can have at most two points of the boundary of any Dn and this
contradicts the fact that A is uncountable.

Problem 148�

Find all continuous functions f : R! R such that f(x+ y) � P (f(x); f(y))
for some polynomial P in two variables with real coe¢ cients.

Since f(x) = P (f(x); f(0)) it follows that the range of f is contained in
the set of zeros of the polynomial p(t) = P (t; f(0)) � t: This forces f to be a
constant unless p(x) � 0: Also, P (f(x); f(y)) � P (f(y); f(x)) for all x:y which
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implies that P (u; v) = P (v; u) for all u; v 2 f(R): Since P (u; v) � P (v; u) is a
polynomial in u vanishing throughout an open interval (if f is not a constant) for
�xed v 2 f(R) it must be identically 0; repeating this argument with the second
variable we see that P (u; v) = P (v; u) for all u; v 2 R: Since P (x; f(0)) � x and
P (f(0); y) � y this forces P (u; v) to be a(u + v) + buv + c for some constants
a; b; c?????????: [ This proof is copied from Amer. Math. Monthly. Why should
P be of degree 1?]. Now f(x + y) = a(f(x) + f(y)) + bf(x)f(y) + c for all
x; y: Put y = 0 to get f(x) = af(x) + bf(x)f(0) + c + af(0): If f is not a
constant then 1 = a + bf(0) and c + af(0) = 0; we get f(x + y) = (1 �
bf(0))(f(x) + f(y)) + bf(x)f(y) � f(0) + bf2(0) for all x; y: If b = 0 this gives
f(x+ y) = f(x) + f(y)� f(0) which implies f(x)� f(0) � �x for some � 2 R:
Thus, f(x) � �x+ f(0): If b 6= 0 then f(0) = 1�a

b : Let g(x) = bf(x) + a: Then
g(x+ y) � g(x)g(y): Since g is not identically 0 it has no zeros. It follows that
g(x) � e�x for some real number � and we get f(x) = e�x�a

b : Hence the only
possibilities are f(x) � ax+ b and f(x) � ae�x + b:

Problem 149

Chracterize all C1 functions f from an open interval I in R into R such that f
satis�es a di¤erential equation of the type f (n)+gn�1f (n�1)+:::+g1f 0+g0f = 0
where the g0is are all continuous.

If f and its �rst (n � 1) derivates vanish at some point t then f (n)(t) = 0
by the di¤erential equation and this forces f to be identically 0 by a stan-
dard result in theory of ODE�s. If this is not the case we can de�ne gk(x) =

� f(k)(x)f(n)(x)
[ff(x)g2+ff 0(x)g2+:::+ff(n�1)(x)g2] so that the given equation holds.

Problem 150

Let c1; c2; :::; cN be distinct non-zero complex numbers. Show that
NX
k=1

1
ck

Y
j 6=k

1
cj�ck =

(�1)N+1

c1c2:::cN
:

Let f(z) =
NY
k=1

1
z�ck : We can write f(z) as

NX
k=1

ak
z�ck for some complex con-

stants a1; a2; :::; aN : [ Proof: induction on N ]. Now ak = lim
z!ck

f(z)[z � ck] =Y
j 6=k

1
cj�ck : Hence

NY
k=1

1
0�ck =

NX
k=1

ak
0�ck :

Problem 151
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Let d1 and d2 be two metrics on a set X such that any open ball w.r.t one
contains an open ball w.r.t. the other. Does it follow that the metrics are
equivalent ( in the sense they have the same open sets)?

No! Let X = R; d1(x; y) = jx� yj ; d2(x; y) = jx� yj if x; y 2 [0;1) or
x; y 2 (�1; 0) and d2(x; y) = jx� yj + 1 if x 2 [0;1) and y 2 (�1; 0) or
y 2 [0;1) and x 2 (�1; 0): Writing B1 and B2 for open balls w.r.t d1 and
d2 we have B2(x; r) � B1(x; r) and, for x 6= 0; B1(x; �) � B2(x; r) if we de�ne
� as minfr; jxjg: Let � = r=2 if x = 0: Then B1(�; �) � B2(x; r): The interval
[0; 1) = B2(0; 1) is open w.r.t. d2 but not w.r.t. d1:

Problem 152

Let
1X
n=1

an be a convergent series of positive terms. If bn " 1 in such a way

that [log(n)][1� bn] is bounded show that
1X
n=1

abnn <1:

1X
n=k

abnn � e2�
1X
n=k

(an)
1��= log(n)( 1n2 )

�= log(n) for k su¢ ciently large (because

bn � 1��= log(n) and ( 1n2 )
�= log(n) � e�2�) where � = supf[log(n)][1� bn]g:

Now (�)1��= log(n)(�)�= log(n) � [1��= log(n)]�+[�= log(n)]� for any positive

numbers � and � by convavity of logarithm. Hence
1X
n=k

abnn � e2�
1X
n=k

f[1 �

�= log(n)]an + [�= log(n)]
1
n2 g <1:

Problem 153

Let P and Q be orthogonal projections on �nite dimensional complex Hilbert
space H: Show that PQ is an orthogonal projection if and only if all eigen values
of P +Q belong to f0g [ [1;1):

PQ is a projection if and only if PQ = QP: Suppose this is the case. Then
P 2 � Q2 = (P + Q)(P � Q) = (P � Q)(P + Q): Let (P + Q)x = �x; x 6= 0:
We have (P � Q)x = (P 2 � Q2)x = (P � Q)(P + Q)x = �(P � Q)x: If � 6= 1
this gives (P �Q)x = 0 or Px = Qx so Px = Qx = (�=2)x: But P and Q are
idempotent so � = 0 or � = 2: Thus � 2 f0; 1; 2g � f0g [ [1;1):
Now suppose all eigen values of (P+Q) belong to f0g[[1;1): Let (P+Q)x =

�x; x 6= 0: Then �(Px�Qx) = (P �Q)(P +Q)x = (P �QP + PQ�Q)x and
(PQ�QP )x = (��1)(Px�Qx): Now (P+Q)(P�Q)x = (P�PQ+QP�Q)x =
(P �Q)x� (��1)(Px�Qx) = (2��)(Px�Qx): If Px 6= Qx then x is an eigen
vector of (P +Q) with eigen value 2��: In that case either � = 2 or 2�� � 1;
by hypothesis. Thus, � = 2 or � � 1: But if � 6= 0 then we also have � � 1
by hypothesis so � 2 f0; 1; 2g: In all these cases we claim that PQx = QPx: If
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� = 1 then (PQ�QP )x = (�� 1)(Px�Qx) = 0: If � = 2 then Px+Qx = 2x:
Thus 2 kxk � kPxk + kQxk � kxk + kxk = 2 kxk so equality holds throughout
and Px = cQx with c � 0: But then 2x = (1+c)Qx and 2

1+c must be 0 or 1: This
forces c to be 1 and we get Px = Qx = x: So PQx = QPx = x: Let � = 0: Then
Px = �Qx: This implies < Px; x >= � < Qx; x > which forces both sides to
be 0: Thus kPxk2 = kQxk2 = 0 and Px = Qx = 0 and PQx = QPx = 0:
Of course, Px = Qx then also PQx = QPx: Thus in all cases PQx = QPx
whenever x is an eigen vector of (P +Q): But eigen vectors of P +Q span the
entire space H: [ P + Q is non-negative de�nite, hence diagonalizable]. Hence
PQ = QP .

Problem 154

Let 
 be an open connected realtively compact subset of a metric space
(X; d): Assume @
 6= ;: Let f : 
! 
 be a continuous map such that its range
f(
) is open. Show that d(f(x0); @
) = d(x0; @
) for some x0 2 
:

Let g(x) = d(f(x); @
) � d(x; @
): It su¢ ces to show that g takes both

positive and negative values on 
. Let v 2
�

 with d(v; @
) = maxfd(z; @
) : z 2


g: Clearly v 2 
 and g(v) � 0: Suppose f(
) = 
: Let f(w) = v with w 2 
:
Then g(w) = d(f(w); @
) � d(w; @
) = d(v; @
) � d(w; @
) � 0: If f(
) 6= 

then there a point exists y 2 
\@f(
) and, clearly, y =2 f(
): [ If 
\@f(
) = ;
then f(
) has no boundary points in 
 and so it is open and closed in 
: But

 is connected so f(
) = 
 or f(
) = ;; a contradiction]. Since y 2 @f(
)
there exists a sequence fyng � 
 such that f(yn)! y: There is a subsequence

ynj converging to some point u in
�

: If u 2 
 then y = lim f(ynj ) = f(u) 2

f(
) contradicting the fact that y =2 f(
): Hence u 2 @
: Now d(y;
) > 0
because 
 is open. Thus d(f(ynj ); @
) � 1

2d(y;
) for j su¢ ciently large. Since
d(ynj ; @
)! d(u; @
) = 0 it folows that g(ynj ) = d(f(ynj ); @
)�d(ynj ; @
) > 0
for j su¢ ciently large.

Problem 155

Let P and Q be projections on Cn: If Tr(PQPQ) = Tr(PQ) show that PQ
is a projection. [Tr stands for trace].

We prove that Tr[fPQ � (PQ)�gf(PQ) � (PQ)�g�] = 0: This implies that
PQ = (PQ)� so PQ = Q�P � = QP and hence PQ is a projection. Now
Tr[fPQ � (PQ)�gf(PQ) � (PQ)�g�] = Tr[PQQ�P � � PQPQ � Q�P �PQ +
Q�P �PQ]
= Tr[PQQP�PQPQ�QPPQ+QPPQ] = Tr(PQ)�Tr(PQ)�Tr(PQ)+

TR(PQ)) = 0

Problem 156
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Let F : Cn ! Cn be a di¤erentiable map such that kF (x)k � kxk for all
x 2 Cn: Show that F is linear.
[ Di¤erentiability means existence of a linear map Lx : Cn ! Cn ( for any

x 2 Cn) such that kF (x+h)�F (x)�Lxhkkhk ! 0 as khk ! 0]:

Let g(z) = F (a + zb); z 2 C with a; b 2 Cn �xed. g is di¤erentable. We
claim that g(z) = �(a; b) + z�(a; b); for some �(a; b); �(a; b) 2 C: Assuming this
we get F (zb) = �(0; b) + z�(0; b) and we get �(0; b) = 0 by putting z = 0: Thus
F (zb) = z�(0; b): In particular F (b) = �(0; b) so F (zb) = zF (b): Also F (a) =
g(0) = �(0; b) + 0�(0; b) and hence F (a+ zb) = F (a) + z�(a; b): Multiplying by
1
z and letting jzj ! 1 we get F (b) = lim

z
F (az + b) = �(a; b): Thus F (a+ zb) =

F (a)+zF (b) which completes the proof. To prove the claim let h(z) = g(z)�g(0)
and � = h(z + �w) � h(z) � �h(w) where z; �; w 2 C are �xed. Consider the
entire function z !< h(z); � > : It follows from hypothesis that j< h(u); � >j �
� + � juj for all u 2 C: Hence < h(u); � >= cu+ d for some constants c and d:
Now < �; � >=< h(z + �w) � h(z) � �h(w); � >= c(z + �w) + d � (cz + d) �
�(cw+d) = 0:We have proved that h(z+ �w)�h(z)� �h(w) = 0 for all choices
of z; �; w 2 C which proves that h is linear. Hence g(z) = g(0) + h(z) is of the
type �(a; b) + z�(a; b):

Problem 157

If T and S are commuting bounded operators on a complex Banach space
X and T 6= S show that d(�(T ); �(S)) � kT � Sk :

We prove the stronger result that for any � 2 �(T ) there exists � 2 �(S)
such that j�� �j � kT � Sk : Let V = I � (�I � T )(�I � S)�1: [ If � 2 �(S)
there is nothing to prove]. Then V = (�I�S)(�I�S)�1�(�I�T )(�I�S)�1 =
(T�S)(�I�S)�1:We claim that that if the result is false then the spectral radius
of (�I�S)�1 is less than 1

kT�Sk : Once this is proved we can conclude (from the
fact that TS = ST ) that spectral radius of V does not exceed the product of the
spectral radii of (T �S) and (�I �S)�1 which is less than 1: This means I �V
is invertible and hence (�I � T ) is invertible which is a contradiction. To prove
the claim note that j�� �j > kT � Sk for all � 2 �(S) by assumption. If the
claim is false then there exists � such that j� j � 1

kT�Sk and � 2 �((�I � S)
�1):

It follows that I � �(�I � S) is not invertible. Hence � � � � 1
� 2 �(S): This

implies that j�� �j > kT � Sk which means 1
� > kT � Sk ; a contradiction.

Problem 158

If A and B are projections on Cn show that the following operators have the
same range:

AB �BA;ABA�BAB; (AB)2 � (BA)2:

Let C = A+B�I;D = A�B: Then DC = A2+AB�A�BA�B2+B =
AB � BA: Also DC2 = (A � B)(A + B + I � 2A � 2B + AB + BA) = (A �
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B)(I �A�B +AB +BA) = ABA�BAB and DC3 = (AB)2 � (BA)2: Thus,
the ranges of the three operators AB � BA;ABA � BAB; (AB)2 � (BA)2 are
the images under D of the ranges of C;C2 and C3: However C is self-adjoint
and hence diagonalizable. It follows from this that the ranges of C;C2 and C3

are all the same.

Problem 159

Prove or disprove the following:
if f : R! R is continuous then there exists a 2 R such that jf(a)j�jf(x)j <

ja� xj for all x 6= a:

True! Since jf(x)j + jxj =2 ! 1 as jxj ! 1 it attains its minimum value
at some point a: For any x 6= a we have jf(x)j+ jxj =2 � jf(a)j+ jaj =2 and so
jf(a)j � jf(x)j � jxj =2� jaj =2 � ja�xj

2 < ja� xj :

Problem 160

Let A and B be n � n matricies with real entries such that A2 + B2 =
AB �BA: If AB �BA is invertible show that 4 divides n:

We have (A + iB)(A � iB) = A2 + B2 + iBA � iAB = (1 � i)(AB � BA):
Hence (1� i)n det(AB�BA) � 0: In particular (1� i)n is a real number. Thus
2n=2e�in�=4 is real. Therefore sin(n�=4) = 0: QED

Problem 161

Let f(x) = log(1+x) for x > 0: Let f1 = f; fn+1 = f �fn (n � 1): Show that
fn(x)!1 as n!1 for each x and �nd the precise rate at which fn(x)!1:

We claim that nfn(x) ! 2x
x+2 : We use the inequalities

2x
x+2 � log(1 + x) �

2x
x+2�x2 8x 2 (0;1): [For the right hand inequality consider the cases x < 1 and
x � 1 separately. For x � 1 we have x � 2x

x+2�x2 ]. Let a0 =
x
n ; an+1 = f(an) for

n � 0: Then fang is decreasing sequence of positive numbers. Since an+1 � 2an
an+2

we get 1
an+1

� 1
an
+ 1
2 : By iteration we get

1
an
� n

2 +
1
a0
= n

2 +
n
x = nx+22x : Hence

lim inf
n

nan � 2x
x+2 : Now an+1 � 2an

an+2�a2n
and 1

an+1
� an+2�a2n

2an
= 1

2 +
1
an
� an

2 �
1
2 +

1
an
� a0

2 : By iteration
1
an
� (n 1�a02 )+ 1

a0
= (nn�x2n )+

n
x =

nx�x2+2n
2x : Hence

nan � 2x
x�x2=n+2 and lim sup

n
nan � 2x

x+2 :

Problem 162

Let P and Q be projections onto closed subspaces M and N of a Hilbert
space H: Find a necessary and su¢ cient condition on M and N for PQ to be a
projection.
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The condition is: M \ (M \N)? and N \ (M \N)? are orthogonal to each
other. If PQ is a projection then PQ = QP: Let x 2 M \ (M \ N)? and
y 2 N \ (M \N)?: Since PQ is the projection onM \N; we have PQx = 0 and
QPx = 0: Thus, together with PQ = QP gives Qx = 0 and Py = 0; i.e. x 2 N?

and y 2 M?: Since x 2 N? and y 2 N we get < x; y >= 0: This proves the
necessity of the condition. Now suppose M \ (M \N)? and N \ (M \N)? are
orthogonal to each other. Let x 2 H:We can write x as x1+x2+x3+x4 where
x1 2M \N;x2 2M \N?; x3 2 N \M? and x4 2 (M +N)?: This is because
the spacesM\N;M\(M\N)? and N\(M\N)? are orthogonal to each other
and their sum is M +N:We have PQx1 = QPx1 = x1 and PQx4 = QPx4 = 0:
Also PQx2 = QPx2 = PQx3 = QPx3 = 0: Thus PQ = QP and hence PQ is a
projection.

Problem 163

Let f; g : [0; 1] ! R be continuous. If
1Z
0

fg = 0 show that (

1Z
0

g2)(

1Z
0

f2) �

4[(

1Z
0

f)(

1Z
0

g)]2: Also show that (

1Z
0

g2)(

1Z
0

f)2 + (

1Z
0

f2)(

1Z
0

g)2 � 4[(
1Z
0

f)(

1Z
0

g)]2:

Normalization reduces the proof of the �rst inequlaity to the case

1Z
0

f2 =

1Z
0

g2 = 1: Since ff; gg is orthonormal we can apply Bessel�s inequlaity to the

constant function 1 to get (

1Z
0

f)2+(

1Z
0

g)2 � 1, This and the inequality [(
1Z
0

f)2+

(

1Z
0

g)2]2 � 4(

1Z
0

f)2(

1Z
0

g)2 give 4(

1Z
0

f)2(

1Z
0

g)2 � [(

1Z
0

f)2 + (

1Z
0

g)2]2 � (

1Z
0

f)2 +

(

1Z
0

g)2 � 1 which gives the �rst inequality. for the second inequality we cannot

assume that

1Z
0

f2 =

1Z
0

g2 = 1: Let a =

(

1Z
0

f)2

1Z
0

f2

and b =

(

1Z
0

g)2

1Z
0

g2

. We have to show

that 1a+
1
b � 4: If we show that a+b � 1 it would follow that

1
a+

1
b �

1
a+

1
1�a � 4

since a(1 � a) attains its maximum value on [0; 1] at the point a = 1
2 : For the
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inequality a+ b � 1 note that f

(

Z
f2)1=2

and g

(

Z
g2)1=2

form an orthonormal set

apply Bessel�s inequlaity to the constant function 1.

Problem 164

Let P and Q be projections on Cn: Show that any eigen value of PQ+QP
is � �1=4: Is �1=4 attained?

0 � (P +Q� 1
2I)

2 = P +Q+ 1
4I+PQ+QP �P �Q so PQ+QP � �1=4I:

Hence any eigen value of PQ + QP is � �1=4: Take P =

�
1 0
0 0

�
; Q =

1
4

�
1

p
3p

3 3

�
to show that�1=4 is attained. Indeed, PQ+QP = 1

4

�
2

p
3p

3 0

�
and eigen values of this matrix are �1=4 and 3=4:

Problem 165

Let A be an n�n complex matrix such that A2 = 0: Show that R(A+A�) =
R(A) +R(A�) where R(:) is the range of (:):

Let N(:) be the kernel of (:). By hypothesis, R(A) � N(A): If y 2 R(A) +

R(A�) then y = Au+A�v and we can decompose u� v as x1 + x2 where x1 2
R(A); x2 2 N(A�): (This is because R(A) = (N(A�))?). Note that x1 2 N(A)
because R(A) � N(A): Consider w = u � x1 = x2 + v: We have (A + A�)w =
Aw + A�w = A(u� x1) +A�(x2 + v) = Au� 0 + 0 + A�v = y: This completes
the proof.

Problem 166

Let f 2 C[0; 1] and f(1) = 0: Show that there exists a 2 (0; 1] with f(a) =
aZ
0

f(x)dx:

Let g(x) = e�x
xZ
0

f(x)dx: Then g0(x) = e�xf(x) � e�x
xZ
0

f(x)dx: Su¢ ces

to show that there exists a 2 (0; 1] with g0(a) = 0: If no such a exists then
either g is decreasing on (0; 1) or increasing there. Let h = g2: Then h is
increasing (because g > g(0) = 0 if g0 > 0 on (0; 1) and g < g(0) = 0 if
g0 < 0 on (0; 1) so that, in either case, 2gg0 > 0) but h0(1) = 2g(1)g0(1) =

76



[2e�1
1Z
0

f(x)dx][e�1f(1)�e�1
1Z
0

f(x)dx] = �2e�2[
1Z
0

f(x)dx]2 < 0 where we used

the fact that f(1) = 0 and there would be nothing to prove if

1Z
0

f(x)dx = 0:

Problem 167

Prove that
nX
k=0

�
n
k

��
2k
k

�
=
X
k�n=2

�
n
2k

��
2k
k

�
3n�2k for any posi-

tive integer n:

Consider the coe¢ cient of xn in the polynomial (1+3x+x2)n:We have (1+

3x + x2)n =
nX
k=0

�
n
k

�
(1 + x2)k(3x)n�k =

nX
k=0

�
n
k

�
(3x)n�k

kX
j=0

�
k
j

�
x2j :

The coe¢ cient of xn in this is the right side of the identity we are required to

prove. Now, (1 + 3x+ x2)n = [(1 + x)2 + x]n =
nX
k=0

�
n
k

�
(1 + x)2kxn�k

=
nX
k=0

�
n
k

�
xn�k

2kX
j=0

�
2k
j

�
xj and the coe¢ cient of xn is

nX
k=0

�
n
k

��
2k
k

�
;

the left side of the identity.

Problem 168

Let f; g : [0; 1] ! R be continuous. Prove that there exists a 2 (0; 1) such

that

1Z
0

f(x)dx

aZ
0

xg(x)dx =

1Z
0

g(x)dx

aZ
0

xf(x)dx:

Case 1:

1Z
0

f(x)dx 6= 0 6=
1Z
0

g(x)dx: Let h(x) = f(x)
a � g(x)

b where a =

1Z
0

f(x)dx; b =

1Z
0

g(x)dx: Let H(x) =

xZ
0

th(t)dt: Claim: H(1) +

1Z
0

H(x)
x2 dx = 0:

To see this note that

1Z
0

H(x)
x2 dx = � 1

xH(x)j
1
0+

1Z
0

H0(x)
x dx = �H(1)+

1Z
0

h(x)dx =

�H(1): This proves the claim and we conclude that H cannot be positive
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throughout (0; 1) or negative throughout (0; 1): Hence H(a) = 0 for some

a 2 (0; 1) which gives
1Z
0

f(x)dx

aZ
0

xg(x)dx =

1Z
0

g(x)dx

aZ
0

xf(x)dx:

Case 2:

1Z
0

f(x)dx = 0: LetH(x) =

xZ
0

tf(t)dt:We have

1Z
0

H(x)
x2 dx = � 1

xH(x)j
1
0+

1Z
0

H0(x)
x dx = �H(1) +

1Z
0

f(x)dx = �H(1): As in the previuos case we con-

clude that H(a) = 0 for some a 2 (0; 1) which gives

1Z
0

f(x)dx

aZ
0

xg(x)dx =

1Z
0

g(x)dx

aZ
0

xf(x)dx = 0: Similar argument works when

1Z
0

f(x)dx = 0:

Problem 169

Prove or disprove that if A is set of (Lebesgue) measure 0 in R and � > 0

then there exist intervals I1; I2; ::: such that A �
[
n

In and the length of In does

not exceed �=2n for any n:

False! If this is true then inff
1X
n=1

(diam(Un)
p : Un open and A �

[
n

Ing �

1X
n=1

(�=2n)p = �p
1X
n=1

(1=2n)p ! 0 as �! 0 showing that the Hausdor¤ dimension

of A is 0: The Cantor set is an example of a set of measure 0 whose Housdor¤
dimension ( log 2log 3 ) is positive.

Problem 170

Show that there is no continuous function f : (0:1) ! R such that f(x) =
0, f(2x) 6= 0:

Let A = fx : f(x) = 0g: Then Ac = 2A: A is a closed subset of (0:1) and
hence Ac = 2A is open. This implies that A is open and closed on the connected
set (0:1): So A = ? or A = (0:1): But we cannot have Ac = 2A in these
cases.

Problem 171

Prove that x

x+1Z
x

sin(t2)dt < 1 for all x > 1:

78



Integrating by parts

x+1Z
x

sin(t2)dt = �
x+1Z
x

1
2t [(�2t) sin(t

2)]dt = � 1
2t cos(t

2)jx+1x �

x+1Z
x

1
2t2 cos(t

2)dt < 1
2(x+1) +

1
2x +

x+1Z
x

1
2t2 dt =

1
2(x+1) +

1
2x +

1
2x �

1
2(x+1) =

1
x :

Problem 172

Let A be a compact subset of R and P (A) the collection of all non-constant
polynomials with real coe¢ cients with leading coe¢ cient 1: [ Leading coe¢ cient
of p(x) is the coe¢ cient of the highest power x in p]. Let kpk be supfjp(x)j :
x 2 Ag.
a) Show that if there exists p 2 P (A) with kpk < 2 then there exists p 2 P (A)

with kpk < 1
b) Show that if A = [�2; 2] then there is no p 2 P (A) with kpk < 2:

a) Let Sp(x) = p2(x)� 1
2 kpk

2. S maps P (A) into itself and kSpk � 1
2 kpk

2
:

Iteration gives
Skp � 1

2k�1
kpk2

k

! 0 as k !1 if kpk < 2: Hence
Skp < 1

for k su¢ ciently large.
b) Suppose there exists p1 2 P (A) with kp1k < 2: By a) there exists p 2 P (A)

with kpk < 1: We claim the following:
i) there exists a map T : P (A) ! P (A) such that kT�k � k�k and if

� 2 P (A) has degree 2k then T� has degree k
ii) there exists h 2 P (A) such that deg(h) = 2n for some n and khk < 2:

Note that Tnh would then be an element of P (A) with norm less than 2. This is
a contradiction because Tnh has degree 1: [x+c has norm 2+ jcj]. It reamins to
construct T and h: Let T�(x) = �2(x+ 2) where �2(x

2) = �1(x) =
�(x)+�(�x)

2 :
[ �1 is a polynomial in x

2 and hence �2 2 P (A) exists]. This proves i). For ii)
let h(x) = x(g(x))l where g = Tmp and deg p = 2mq; q odd and l is determined
by the fact qj(2n� 1) so l = 2n�1

q is an integer: Note that deg(h) = ql+1 = 2n:

Since kgk � kpk < 1 we have khk < 2:

Problem 173

Let A be a discrete subset of R. [ i.e. a 2 A ) 9 � > 0 such that
A \ (a� �; a+ �) = fa)]. Can the closure of A be uncountable?

Yes! For each of the intervals removed in the construction of Cantor set pick
a sequence increasing to the right end point and a sequence decresing to the left
end point on that interval. Put all these sequences together to get a discrete
set whose limit points include the end points of the intervals removed in the
construction of Cantor set. The set of all these end ponts is the set of all �nite

sum
NX
n=1

ai
3i with N � 1; a0is 2 f0; 2g: It follows that every point of the Cantor

set belongs to the closure of A:
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Problem 174

Prove Banach�s Theorem that any isometric map T from one normed linear
X onto another normed linear Y with T (0) = 0 is linear.

Remark: the range of T must be a linear space for the proof to work.
We de�ne the centre (x; y) of any two points x and y of X as follows: let

H1 = fz : d(z; x) = d(z; y) = 1
2d(x; y)g and, inductively, Hn = fz 2 Hn�1 :

d(z; w) � 1
2�(Hn�1) 8w 2 Hn�1g where �(A) stands for the diameter of the set

A. We �rst prove that
1\
n=1

Hn has at most one point. Note that Hn � Hn�1

and �(Hn) � 1
2�(Hn�1) : if z1; z2 2 Hn then z2 2 Hn�1 and hence d(z1; z2) �

1
2�(Hn�1) by de�nition of Hn: It follows that

1\
n=1

Hn has at most one point.

Now, v � x+y
2 2 H1. We claim that it belongs to each Hn: For this we verify

the following:
u 2 Hn ) x+ y � u 2 Hn (n = 1; 2; :::) (1)
Indeed this result is trivial for n = 1 and we prove it by induction on n: Thus

u 2 Hn ) u 2 Hn�1 ) x+ y� u 2 Hn�1 ) d(x+ y� u; z) = d(x+ y� z; u) �
1
2�(Hn�1) for all z 2 Hn�1 because u 2 Hn and x+ y � z 2 Hn�1 by induction
hypothesis. This proves (1): Now suppose v 2 Hn�1: To show v 2 Hn we
have to show d(v; w) � 1

2�(Hn�1) 8w 2 Hn�1: But d(v; w) =
x+y

2 � w
 =

1
2 kx+ y � 2wk =

1
2d(w; x+ y�w) �

1
2�(Hn�1) since x+ y�w 2 Hn�1 by (1).

We have proved that v 2
1\
n=1

Hn and hence that
1\
n=1

Hn = fx+y2 g 8x; y 2 X: [We

remark that this gives a de�nition of the centre or mid-point of x and y involving
only the metric; algebraic operations are not involved!] It now follows easily that
T (x+y2 ) =

T (x)+T (y)
2 for all x; y 2 X: Since T (0) = 0 we get T (x2 ) =

T (x)
2 and

hence T (x+ y) = T (x) + T (y): This and continuity of T yield linearity.

Problem 175

Let (X; d) be a metric space, A � X and f : X ! (0;1) a map such that
f(x)f(y) � d(x; y) whenever x 2 A and y 2 Ac: Show that A and Ac are F�
sets, i.e. they are countable unions of closed sets. Coversely, if A and Ac are F�
sets show that such a function f exists.

[ Remark: there is no function f : R! (0;1) such that f(x)f(y) � d(x; y)
whenever x 2 Q and y 2 Qc because Qc is not an F�].
Let An = fa 2 A : f(a) � 1

ng: If a 2 An then f(y) � nd(a; y) for y 2 Ac:

If a 2
�
An \ Ac then the same inequuality holds and when y = a we get the

contradiction that f(a) = 0: Thus
�
An � A: It follows that A =

1[
n=1

�
An: Thus,
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A is an F�: The hypothesis is symmetric in A and Ac; so Ac is also an F�:
Now assume that A and Ac are F� sets. Let fCng and fDng be increasing
sequences of closed sets with limits A and Ac respectively. For x 2 A let
N(x) = minfn � 1 : x 2 Cng: Let f(x) = minfd(x;DN(x)); 1g: Similarly for
y 2 Ac let M(y) = minfn � 1 : y 2 Dng and let f(y) = minfd(y; CM(y)); 1g::
If N(x) � M(y) then y 2 DM(y) � DN(x) so f(x) � d(x;DN(x)) � d(x; y)
and f(x)f(y) � f(x) � d(x; y): If N(x) < M(y) then f(x)f(y) � f(y) �
d(y; CM(y)) � d(x; y) because x 2 CN(x) � CM(y):

Problem 176

If f : (0;1) ! R is a measurable function such that f(x + y) lies between
f(x) and f(y) for all x and y show that f is a constant. Give an example of a
non-constant (non-measurable) function with this property.

If f is not a constant then we can �nd x1; x2 such that a1 < a2 where
a1 = f(x1); a2 = f(x2): Let S1(y) = fx 2 (0; y) : f(x) � a1g and S2(y) = fx 2
(0; y) : f(x) � a2g. If x 2 (0; 12x1)nS1(

1
2x1) then f(x) > a1 and f(x1 � x) � a1;

for, otherwise, a1 = f(x1) = f(x + (x1 � x)) would be between f(x) and
f(x1�x) and hence it would exceed a1; a contradiction. Thus x1�x 2 S1(x1):
This shows that S1(x12 )[ [x1�f(0;

1
2x1)nS1(

1
2x1)g] � S1(x1): This implies that

m(S1(x1)) � x1
2 since S1(x12 ) and x1 � f(0;

1
2x1)nS1(

1
2x1)g are disjoint. [m is

the Lebesgue measure]. Now note that f(2x) lies between f(x) and f(x) so
f(2x) = f(x): By induction we get f(nx) = f(x) for all n � 1 and for all
x 2 (0;1): It follows that f(qx) = f(x) for all rational q > 0 and for all
x 2 (0;1): If y > 0 then we can �nd a rational number q > 0 such qx1 < y: It
follows that qS1(x1) � S1(y) and hence that m(S1(y)) � qx1

2 : Letting q !
y
x1

we get m(S1(y)) � y
2 : A similar argument shows that m(S2(y)) � y

2 : Since
S1(y) and S2(y) are disjoint subsets of (0; y) it follows that m(S1(y)) =

y
2

and m(S2(y)) =
y
2 : This holds for each y and hence m(S1(y) \ I) =

m(I)
2 for

any interval I � (0; 1): It follows that the same holds for any measurable set
I � (0; 1): In particularm(S1(1)\S1(y)) = m(S1(1))

2 which means m(S1(1)) = 0:
Similarly m(S2(1)) = 0: But m(S1(1)) = 1

2 which is a contradiction.

Let g be an additive non-measurable function: R ! R and f(x) = g(x)
x :

Then f(x + y) = g(x)+g(y)
x+y = x

x+yf(x) +
y

x+yf(y) which lies between f(x) and
f(y) but f is not a constant.

Problem 177

Let C be a closed convex set in a normed linear space such that for some
� > 0; kxk � 1 + � implies x = c + y with c 2 C and kyk � 1: Show that the
interior of C is non-empty.

We claim that kxk < � ) x 2 C: If a; b 2 (0;1) we have (a+b)C = aC+bC:
Writing Br for fx : kxk � rg we have B1+� � B1 + C: This gives B(1+�)2 =
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(1 + �)B1+� � (1 + �)B1 + (1 + �)C = B1+� + (1 + �)C � B1 +C + (1 + �)C =

B1+(2+�)C: By induction we get B(1+�)k � B1+
k�1X
j=0

(1+�)jC = B1+
(1+�)k�1

� C:

This gives B� � B�=t + (1 � 1
t )C where t = (1 + �)k: [t depends on k]. Now

kxk � � implies x = xk + yk with kxkk � �=t and yk 2 (1 � 1
t )C: Note that

xk ! 0 as k !1: Also, (1� 1
t )! 1 so 1

(1� 1
t )
yk is a sequence in C converging

to x: Since C is closed we see that x 2 C:

Problem 178

Let f : [0;1) ! R be a C1 function such that (�1)nf (n)(x) � 0 for all
x 2 [0;1) and for all n � 0: Show that the function g de�ned by g(x) =
f(0)�f(x)

x (x > 0); g(0) = �f 0(0) has the same property.

We have xg(n)(x) = �f (n)(x)� ng(n�1)(x) and g(n)(0) = � f(n+1)(0)
n+1 : Hence

g(n�1)(x) = � 1
xn

xZ
0

tn�1f (n)(t)dt and the result follows.

Problem 179

A Lemma in Rudin�s real and Complex Analysis says that if c1; c2; :::; cN

are complex numbers then we can �nd S � f1; 2; :::; Ng such that

������
X
j2S

cj

������ �
1
�

NX
j=1

jcj j : Prove that for any � > 0 we can �nd an example where

������
X
j2S

cj

������ <
( 1� + �)

NX
j=1

jcj j :

Let cj = eij�=N ; 1 � j � N: Then lim
N!1

�������
X
j2S(�)

cj

�������
NX
j=1

jcj j

= lim
N!1

�������
X
j2S(�)

cj

�������
N =

lim
N!1

1
2�

�������
X
j2S(�)

cj

�������
N=2 � = 1

2�

�+�=2Z
���=2

eitdt = 1
� where S� = fj 2 f1; 2; :::; Ng : ��

2 �

� � arg(cj) � �
2 g (as in Rudin�s book).

Problem 180
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Let = be the collection of all N�N matrices A such that aij � 0;
X
i

aij = 1

and
X
j

aij = 1 for all i; j: [ Matrices of this type are called Doubly Stochastic].

Find all matrices in = that commute with all other matrices in =:

Let A be such a matrix. Let � be a permutation of f1; 2; :::; Ng: Let P =
((pij)) where pij = 1 if j = �(i) and 0 otherwise. Then P 2 = and hence
AP = PA: This gives ai��1(j) = a�(i)j 8i; j. In other words, aij = a�(i)�(j)
8i; j; 8�. This means that all the diagonal elements of A are the same and all
the non-diagonal elements are the same. The converse is also true: if aii = a
and aij = b for i 6= j with a + (N � 1)b = 1 [so that A 2 =] then AB = BA
8B 2 =:

Problem 181

Show that there is a continuous map f : R! R which is not 1-1 but 1-1 on
Q: Show that if f : R! R is a continuous map which is 1-1 on Qc then it is 1-1
on R:

First part is easy: f(x) = (x�
p
2)2 will do. Let (if possible) f : R! R be a

continuous map which is 1-1 on Qc but not 1-1 on R: There exist real numbers
a and b with a < b and f(a) = f(b): Let A = fx 2 [a; b] : f(x) = f(a)g: If this
set is dense in [a; b] then f is a constant there which contradicts the hypothesis.
Hence there is an interval (�; �) � [a; b] such that f(x) 6= f(a) 8x 2 (�; �): We
may suppose that (�; �) is the largest interval with this property so that either
f(�) = f(a) and f(�) = f(a): If f takes values greater than as well as less than
f(a) on (�; �) then it would take the value f(a); a contradiction. Hence either
f((�; �)) � (f(a);1) or f((�; �)) � (�1; f(a)): These two cases are similar,
so we assume that f((�; �)) � (f(a);1): Now f([�; �]) is a compact interval
containing f(a) and contained in [f(a);1) so it is of the type [f(a);m] withm >
f(a): Also, m = f(y) for some y 2 [�; �]: Now f([�; y]) = f([y; �]) = [f(a);m]:
[Indeed, f([�; y]) � f([�; �]) � [f(a);1) and the supremum of f([�; �]); namely
m; belongs to f([�; y]) so this interval has to be [f(a);m]: Similarly f([y; �]) =
[f(a);m]]. If x 2 [�; y] then f(x) 2 f([�; y]) = f([y; �]) so there exists z 2 [y; �]
with f(x) = f(z): Not both of x and z can be irrational (unless x = y) and we
have a 1-1 map from the irrationals in [�; y] into the rationals in [y; �] which is
a contradiction.

Problem 182

Let f : R2 ! R2 be continuous. Prove that there is a non-empty proper
closed C in R2 such that f(C) � C:

The proof below shows that R2 can be replaced by Rd for any d � 1: Let

Cx = fx; f(x); f(f(x)); :::g: We prove that
�
Cx 6= R2 for some x: This would
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complete the proof since f(Cx) � Cx and, by continuity, f(
�
Cx) �

�
Cx: Let

D = fx : kxk � 1g and Dn = fx 2 D : kfj(x)k � 1 for 1 � j � ng where
f2 = f � f; f3 = f � f � f; etc. We consider two cases: Dn = ; for some n
and Dn 6= ; for all n: In the �rst case take any x 2 D and note that Cx �
n[
j=1

fj(D): [ Let x 2 D and choose 1 � j1 � n with kfj1(x)k < 1: Since

fj1(x) 2 D there exists 1 � j2 � n such that kfj1+j2(x)k < 1: By induction we
get j1; j2; ::: 2 f1; 2; :::; ng such that kfj1+j2+:::+jk(x)k < 1 for all k: Now any
positive integer m > n lies between j1 + j2 + ::: + jk and j1 + j2 + ::: + jk+1

for some k and fm(x) = fm�(j1+j2+:::+jk)(fj1+j2+:::+jk(x)) 2
n[
j=1

fj(D) because

m � (j1 + j2 + ::: + jk) � jk+1 � n]. Note that
�
Cx �

n[
j=1

fj(D) because fj(D)

is compact and
n[
j=1

fj(D) is a proper subset of R2 because R2 is not compact.

Now cosider the case when Dn 6= ; for all n: Each Dn is compact and hence
1\
n=1

Dn contains a point x0: In this case
�
Cx is disjoint from fx : kxk � kx0k

2 g if

x0 6= 0 and it is disjoint from fx : 13 � kxk �
1
2g if x0 = 0: This proves that

�
Cx

is a proper subset of R2:

Problem 183

Let X and Y be random variables on a probability space such that X;Y;X+
Y and X�Y all have the same distribution. Can we conclude that the common
distribution is degenerate (at 0)? What if EX2 <1? What if E jXj <1?

If EX2 <1 then E[(X+Y )2+(X�Y )2] = 2EX2+2EY 2 so 2EX2 = 4EX2

so X = 0 a.s.. If E jXj < 1 then E jXj = E
��X+Y

2 + X�Y
2

�� � E
��X+Y

2

�� +
E
��X�Y

2

�� = 1
2E jXj+

1
2E jXj = E jXj so X+Y

2 = ZX�Y
2 for some non-negative

r.v. Z: This gives X = Z+1
Z�1Y and jXj � jY j (note that this last inequality

holds even when Z = 1). But the hypothesis now implies that jXj = jY j a.s.
which (in view of X = Z+1

Z�1Y and Z � 0) implies Z = 0 and hence X+Y
2 = 0

and so X
2 = 0 a.s.! This �nishes the case E jXj < 1: In general, however, we

cannot conlcude that the distribution is degenerate. Let U; V be i.i.d. with
density 1

�(1+x2) : Let X = U+V
2 ; Y = U�V

2 : Then X;Y;X + Y;X � Y all have

the charcteristic function e�jtj:

Problem 184

Let f : R ! R be continuous. Prove or disprove that there exists a contin-
uous strictly increasing function g : R ! R such that f � g is di¤erentiable on
R:
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False. We prove that f is continuous and no-where di¤erentiable thehn no
such g exists. In fact f � g cannot be di¤erentiable on in any non-degenerate
interval in R: To see this assume thet f � g is di¤erentiable on (a; b) with a <
b: Let J = g(I) where I = (a; b): Then g�1 : J ! I is increasing, hence
di¤erentiable a.e.. Let y be a point in J at which g�1 is di¤rentiable. Then
f = f � g � g�1 is di¤erentiable at y because f � g is di¤erntiable at g�1(y): This
is a contradiction.

Problem 185

Does there exist a dense set E in R2 such that every point in E has both
coordinates rational but the distance between any two points of E is irrational?

Yes! Let f(xn; yn) : n = 1; 2; :::g be dense in R2: Choose odd positive
integers kn;mn such that

��xn � kn
2n

�� � 1
2n and

��yn � mn

2n

�� � 1
2n : [ The interval

[2nxn�1; 2nxn+1] contains an odd integer kn]. The set f(kn2n ;
mn

2n ) : n = 1; 2; :::g
is dense in R2: [ Let (x; y) 2 R2 and � > 0: The open ball with center (x; y)
and radius �=2 contains in�nitely many of the points (xn; yn) and hence we
can choose a point (xn; yn) in it with 1

2n < �=2
p
2: In this case the distance

from (x; y) to (kn2n ;
mn

2n ) does not exceed �=2 +
q

1
4n +

1
4n = �=2 +

p
2

2n < �].
We complete the proof by showing that the distance between any two of the
points (kn2n ;

mn

2n ) is irrational. Let 1 � j < n: Then 4nd2((kj2j ;
mj

2j ); (
kn
2n ;

mn

2n )) =

4n(
kj
2j �

kn
2n )

2 + 4n(
mj

2j �
mn

2n )
2 = 4n�j(k2j + m2

j ) + k2n + m2
n � 2n�j+1kjkn �

2n�j+1mjmn � 2mod(4) and hence d((kj2j ;
mj

2j ); (
kn
2n ;

mn

2n )) is irrational sinceq
2+4m
4n = (

p
2 + 4m)=2n is irrational for any two positive integers n and m: [

If
p
2 + 4m = p

q with (p; q) = 1 then p is even and q is odd. If p = 2p1 we get
(2 + 4m)q2 = 4p21 so 2j(1 + 2m)q2 which is absurd].

Problem 186
Does there exist a dense subset S of the unit circle S1 such that all points

in S have rational coordinates and the distance between any two points of S is
rational?

Yes. One such set is f( 4t(t
2�1)

(t2+1)2 ;
4t2�(t2�1)2
(t2+1)2 ) : t 2 Qg:

Problem 187

There is no function f : R! R such that f(f(x)) = x2 � 2 8x 2 R:

Write fn for the n � th iterate of f: Let A and B be the �xed points of
f2 and f4 respectively. Then A = fx : x2 � 2 = xg = f�1; 2g and B = fx :
x4�4x2+2 = xg = f�1; 2; �1+

p
5

2 ; �1�
p
5

2 g: [ To solve the fourth degree equation
use the fact that two of th roots are �1 and 2]. Claim: f is a bijection of B:
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For this �rst note that b 2 B ) f(b) is also a �xed point of f4 so f(b) 2 B: If
b1; b2 2 B and f(b1) = f(b2) then f4(b1) = f4(b2) which yields b1 = b2: This
proves the claim. Next we observe that f maps A into A into itself. Indeed
x 2 A) f2(x) = x
) f2(f(x)) = f(f2(x)) = f(x) so f(x) is also a �xed point of f2: This

shows that f maps A into itself. [It is also clear that f(�1) 6= f(2) : otherwise
f2(�1) 6= f2(2) which says �1 = 2 a contradiction. Thus f is a bijection
of A]. It now follows that f(�1+

p
5

2 ) = �1�
p
5

2 : We cannot have f(�1+
p
5

2 ) =
�1+

p
5

2 because �1+
p
5

2 would then be a �xed point of f2: We have proved that

f(�1+
p
5

2 ) = �1�
p
5

2 and f(�1�
p
5

2 ) = �1+
p
5

2 : Thus f2(�1+
p
5

2 ) = �1+
p
5

2 and
�1+

p
5

2 2 A a contradiction.

Problem 188

Let �1; �2; :::; �n be non-atomic probability measures on (
;F): Show that
there exist disjoint sets A1; A2; :::; An in F such that �i(Ai) =

1
n (1 � i � n):

[ See also Problem 295]
Suppose this holds for n non-atomic p.m.�s. Consider (n + 1) non-atomic

p.m.�s �1; �2; :::; �n+1: There exist disjoint sets B1; B2; :::; Bn such that �i(Bi) �
1
n (1 � i � n) and

n[
i=1

Bi = 
: For each i � n we can write Bi as a disjoint

union of sets Bi;1; :::; Bi;n+1 with �i(Bi;j) =
1

n(n+1) ; 1 � j � n + 1: Arrange
the setsBi;1; :::; Bi;n+1 in such a way that �n+1(Bi;1) = maxf�n+1(Bi;j) : 2 �

j � n + 1g: Let Ai =
n+1[
j=2

Bi;j (1 � i � n) and An+1 =
n[
j=1

Bi;1: Then

�i(Ai) =
n+1X
j=2

�i(Bi;j) =
n+1X
j=2

1
n(n+1) =

1
n+1 for 1 � i � n: Also, �n+1(An+1) =

nX
i=1

�n+1(Bi;1) �
nX
i=1

1
n+1�n+1(Bi) =

1
n+1�n+1(

n[
i=1

Bi) =
1

n+1 : This proves (by

induction) that for each n there exist disjoint sets A1; A2; :::; An in F such that
�i(Ai) � 1

n (1 � i � n): Of course we can replace A0is by subsets so that
�i(Ai) =

1
n (1 � i � n):

Problem 189

Let fXi : i 2 Ig be a family of random variables with �nite mean. Which of
the following condition imply which others?
a) fXi : i 2 Ig is uniformly integrable
b) There is an integrable random variable Y such that jXij � Y a.s. for all

i 2 I
c) There is an integrable random variable Y such that PfjXij � ag � PfY �

ag for all i 2 I; for all a 2 [0;1):
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b) implies c) .Also c) implies a). [ In fact a simple Fubini argument showsZ
fjXij>�g

jXij dP �
Z

fY >�g

Y dP ]. We give an example to show that a) does not

imply c). This also implies that a) does not imply b). Let I = (e;1) and Xi

take values i and 0 with probabilities 1
i log i ; 1�

1
i log i : Then

Z
fjXij>�g

jXij dP = 0

or 1
log i <

1
log� according as i � � or i > �: Thus a) holds. Suppose there is

an integrable random variable Y such that PfjXij � ag � PfY � ag for all
i 2 I; for all a 2 [0;1): Then PfY � ag � PfjXij � ag = 1

i log i if 0 < a � i: In

particular PfY � ig � 1
i log i 8i 2 (e;1): Hence

Z
Y dP =

1X
k=0

Z
fk�Y <k+1g

Y dP �

1X
k=0

kPfk � Y < k + 1g =
1X
k=1

PfY � kg �
1X
k=3

1
i log i = 1: It remains to see if

c) implies b). Let f�ng be i.i.d. N(0; 1) and note that c) holds with Y = �1:
There is no random variable Z such that j�ij � Z a.s. for all i: This is clear
from the fact that Pfsup

i
j�ij � ng = 0 for each n so Z > n a.s. for each n!

Problem 190

Does there exist a compact set K in a normed linear space X such that
every point in XnK has exactly two points in K closest to it?

N0! We prove that if there is a point y such that y has exactly two points
in K closest to it then there is a point that has a unique element in K that
is closes to it. Let y 2 XnK and choose x 2 K such that d(y;K) = kx� yk :
Let u = x+y

2 : Note that B(y; kx� yk) \ K = ;: Now the ball B(u; kx�yk2 ) �
B(u; kx� uk) is contained in B(y; kx� yk) and hence it does not intersect K:
It follows that kx� uk = d(u;K): Now suppose there is another element v 2
K with kv � uk = d(u;K): Then kv � yk � kv � uk + ky � uk = d(u;K) +

ky � uk � ku� xk + ky � uk = kx�yk
2 + kx�yk

2 = kx� yk : It follows that v is
the other point closest to y: Now ku� vk = d(u;K) � ku� xk = kx�yk

2 : But

then ky � vk � ku� yk+ ku� vk � kx�yk
2 + kx�yk

2 = kx� yk : The fact that x
and v are both at the same distance (viz. d(y;K)) from y shows that equality
holds throughout and hence that (u�y) = �(u�v) with � � 0: This gives � > 0
and v = ��1

2� x+�+1
2� y: This and the fact that ky � vk = kx� yk show that � = 1

3
and v = 2y � x: This contradicts kv � uk = d(u;K) since the right side does
not exceed ku� xk = kx�yk

2 where as the left side is k2y � x� uk = 3kx�yk
2 :

Problem 191
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If f : (0; 1)�(0; 1)! R is separately continuous and if f vanishes on a dense
subset then it is identically 0:

Suppose f(a; b) > 0 for some a and b 2 (0; 1): There exists � > 0 such that
f(x; b) � 1

4f(a; b) for jx� aj � �: Let J = [a� �; a+ �] \ (0; 1): Let Tn = fx 2

J : f(x; y) � 1
4f(a; b) whenever jy � bj <

1
ng: Then J =

1[
n=1

Tn and each Tn is

closed. By Baire Category Theorem there is an integer m such that Tm has non-
empty interior. This implies that Tm� (b� 1

m ; b+
1
m ) has non-empty interior in

(0; 1)�(0; 1): By hypotheis there is a point (s; t) in Tm�(b� 1
m ; b+

1
m ) such that

f(s; t) = 0: By de�nition of Tm we get f(s; t) � 1
4f(a; b) > 0 a contradiction.

Similarly, f(a; b) < 0 for some a and b 2 (0; 1) leads to a contradiction.

Problem 192

Compute supfinff f(x)x

xZ
0

f1 � f(t)gdt : x > 0g : f : [0;1) ! R is continu-

ous}. Find all continuous functions f such that the supremum is attained at
f:

The supremum is 1
4 and it is attained only at the function f(x) =

1
2 8x 2

[0;1): Proof: write �(f) for inff f(x)x

xZ
0

f1� f(t)gdt : x > 0g: By MVT applied

to

xZ
0

f1 � f(t)gdt we have 1
x

xZ
0

f1 � f(t)gdt = 1 � f(g(x)) with 0 < g(x) < x:

Since f(x)
x

xZ
0

f1� f(t)gdt = f(x)f1� f(g(x))g ! f(0)f1� f(0)g � 1
4 as x ! 0

we get �(f) � 1
4 : The desired supremum is therefore � 1

4 and �(
1
2 ) =

1
4 ; so

the exact value of the supremum is 1
4 : Suppose f is a continuous function on

[0;1) with �(f) = 1
4 : We will show that f(x) = 1

2 8x 2 [0;1): Let F (x) =8>><>>:
1
x

xZ
0

f(t)dt if x > 0

1
2 if x = 0

: Note that �(f) = 1
4 implies f(0)f1� f(0)g = 1

4 which

implies f(0) = 1
2 : Thus F is continuous on [0;1): Claim: f(x) � F (x) � 0 8x

and F is non-decreasing on [0;1): Once the claim is proved we can complete the

proof as follows: f(x)[1�F (x)] = f(x) 1x

xZ
0

[1� f(t)]dt � 1
4 (because �(f) =

1
4 ):

So f(x) > 0 and F (x) < 1: Let l = lim
x!1

F (x)(2 [0; 1]): Note that if lim inf
x!1

f(x) >
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l then F (x) = 1
x

xZ
0

f(t)dt � 1
x

�Z
0

f(t)dt+ 1
x

xZ
�

f(t)dt > 1
x

�Z
0

f(t)dt+ 1
x

xZ
�

(l + �)dt

= 1
x

�Z
0

f(t)dt+ 1
x (l+ �)(x��) �

1
x (l+ �)(x��) > l+ �=2 with su¢ ciently

large � and x (and some � > 0) which is a contradiction. This proves that
lim inf
x!1

f(x) � l: However f(x) � F (x) ! l so lim inf
x!1

f(x) = l: Hence there is a

sequence xn !1 such that f(xn)! l: But then 1
4 = �(f) � lim inf f(xn)xn

xnZ
0

f1�

f(t)gdt = l(1 � l) � 1
4 and hence l =

1
2 : But F (0) =

1
2 ; F " and F (1) = 1

2 so

F (x) = 1
2 for all x: So

xZ
0

f(t)dt = x
2 for all x > 0 which gives f(x) �

1
2 : It remains

to prove the claim. Let f � 0 on [0; c]: ( Such a c > 0 exists because f(0) = 1
2 ).

Since f(x)[1 � F (x)] � �(f) = 1
4 and f(x)[1 � f(x)] � 1

4 we get f(x)[f(x) �
F (x)] � 0 so f(x) � F (x): [ If f(x) = 0 then �(f) � 0; a contradiction). Now

F 0(x) = f(x)
x � 1

x2

xZ
0

f(t)dt = f(x)
x � 1

x2 [xF (x)] =
f(x)�F (x)

x � 0 so F is non-

decreasing on [0;1): Since F (0) = 1
2 it follows that F (x) � 0 for all x. The

claim is now proved.

Problem 193

Let P andQ be projections on a Hilbert spaceH: It is well known that P � Q
in the sense < Px; x >�< Qx; x > for all x 2 H if and only if P = PQ = QP:
Let PHQ be the glb of P and Q; i.e. the largest projection R which is � P and
� Q: If P +Q is invertible show that PHQ = 2P (P +Q)�1P:

Let R = 2P (P + Q)�1Q: Then R = 2P (P + Q)�1(P + Q � P ) = 2P �
2P (P + Q)�1P = 2P [I � (P + Q)�1]P: This gives RP = PR = R: We also
have R = 2(P + Q � Q)(P + Q)�1Q = 2Q � 2Q(P + Q)�1Q = 2Q[[I � (P +
Q)�1]Q and so RQ = QR = R: Thus 2R = (P + Q)R = R(P + Q): This
gives R2 = 2RP (P + Q)�1Q = PR(P + Q)(P + Q)�1Q = PRQ = R: The
formula R = 2P [I � (P + Q)�1]P shows that R is self adjoint. Hence R is a
projection. Since RP = PR = R and RQ = QR = R we see that R � P
and R � Q: Suppose S is a projection such that S � P and S � Q: We
have to show that S � R: We have 2S = (P + Q)S = S(P + Q) and RS =
2P (P+Q)�1QS = 2P (P+Q)�1S = P (P+Q)�1[(P+Q)S] = PS = S: Similarly
SR = 2SP (P +Q)�1Q = 2S(P +Q)�1Q = S(P +Q)(P +Q)�1Q = SQ = S:
This completes the proof.

Problem 194
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Let V and W be vector spaces and T; S : V ! W be linear. Suppose for
each x 2 V there is a scalar cx such that Tx = cxSx (x 2 V ): Show that there
is a scalar c such that T = cS:

Let fSxi : i 2 Ig be a (Hamel) basis for the range of S: Then i1; i2 2 I; i1 6=
i2 ) T (xi1 + xi2) = T (xi1) + T (xi2) which gives cS(xi1 + xi2) = cxi1Sxi1 +
cxi2Sxi2 for some c: The linear independence of Sxi1 and Sxi2 implies cxi1 =
cxi2 = c: Thus, cxi is indpenedent of i 2 I: In other words Txi = �Sxi; i 2

I: Now let x 2 V: Then Sx can be wriiten in the form
NX
j=1

�jSxij : Let y =

x �
NX
j=1

�jxij : Then Sy = 0 which implies Ty = 0: Thus Tx =
NX
j=1

�jTxij =

NX
j=1

��jSxij = �Sx:

Problem 195

Let f : (a; b)! R satisfy the following conditions:
f is 1-1, lim inf

y!x+
f(y) � f(x), lim sup

y!x�
f(y) � f(x) for all x 2 (a; b) and

lim sup
y!b�

f(y) = inf
a<x<b

f(x): Show that f is strictly decreasing and continuous.

Give an example to show that the last condition cannot be dropped. The same
conlcusion holds if lim inf

y!a+
f(y) = sup

a<x<b
f(x):

The counter-example: a = 0; b = 1; f(x) = x for 0 < x < 1
2 and for

2 < x <1; f(x) = 5
2 � x for 1

2 < x � 2:
Now the proof: suppose, if possible there exist x1; x2 such that x1 < x2

and f(x1) < f(x2): Since f is 1-1 we may increase x1 to ensure that we also
have f(x1) 6= inf

a<x<b
f(x): Let A = fx 2 (x2; b) : f(t) > f(x1) on (x2; x)g: Since

lim inf
y!x2+

f(y) � f(x2) > f(x1) it follows that A 6= ;: Suppose � � supA < b:

either f(�) < f(x1) or f(�) > f(x1): In the �rst case lim sup
y!��

f(y) � f(�) <

f(x1) so f(y) < f(x1) for all y 2 (� � �; �) for some � > 0; But then (� �
�; �) \ A = ; contradicting the the fact that � = supA: In the second case
lim inf
y!�+

f(y) � f(�) > f(x1) so f(y) > f(x1) for all y 2 (�; �+�) for some � > 0:
There is a sequence f�ng � A increasing to � and f(y) > f(x1) on (x2; �n) for
each n: So f(y) > f(x1) on (x2; �): We are assuming that f(�) > f(x1) and we
have proved that f(y) > f(x1) for all y 2 (�; �+ �): Putting these together we
see that f(y) > f(x1) for all y 2 (x2; �+�) contradicting the fact that � = supA:
We have now proved that � = b: By hypothesis lim sup

y!��
f(y) = lim sup

y!b�
f(y) =

inf
a<x<b

f(x): However, f(y) > f(x1) > inf
a<x<b

f(x) on (x2; �). This contradiction
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shows that f is (strictly) decreasing. The hypothesis that lim inf
y!x+

f(y) � f(x),

lim sup
y!x�

f(y) � f(x) for all x 2 (a; b) now shows that f is continuous. The

last part is proved in a similar fashion by looking at B = fx : x < x1 and
f(t) < f(x2) for x < t < x1g:

Problem 196

Compute maxfminfjxi � xj j : i 6= jg : x = (x1; x2; :::; xn) 2 Rn; kxk � 1g:

The answer is
q

12
n(n2�1) : Let xi = a+bi; 1 � i � n: Then kxk2 =

X
(a+bi)2:

Maximize over a 2 R to see that kxk � 1 if jbj =
q

12
n(n2�1) : This shows

the desired maximum is at least
q

12
n(n2�1) : We now prove that it is at mostq

12
n(n2�1) : The maximum is attained at some vector (a1; a2; :::; an) and there is

a permutation � of f1; 2; :::; ng such that b1 � b2 � ::: � bn where bi = a�(i); 1 �
i � n: For j > i we have bj � bi = (bi+1 � bi) + (bi � bi�1) + :::+ (bj � bj�1) �
(j � i)minfbj � bi : j > ig = (j � i)minfjaj � aij : j 6= ig
= (j � i)maxfminfjxi � xj j : i 6= jg : x = (x1; x2; :::; xn) 2 Rn; kxk � 1g: It

su¢ ces to show that bj�bi
j�i �

q
12

n(n2�1) for some i and j with i < j: For this it

su¢ ces to show that
X
i 6=j
(bj � bi)2 � 12

n(n2�1)

X
i;j

(j � i)2. The exact value of the

right side of this inequality is 12
n(n2�1) [2n

n(n+1)(2n+1)
6 � 2fn(n+1)2 g2] = 2n: The

left side is
X
i;j

(aj � ai)2 = 2n
X

a2i � 2(
X
j

aj)
2 � 2n:

Problem 197

Let n 2 f2; 3; 4; 5; 6; 7g: Does there exist an n� times continuously di¤eren-
tiable function f : R! R such that f(x)f 0(x):::f (n)(x) < 0 for all x 2 R?:

The function f(x) = e�x satis�es the desired inequality for n = 2; 5 and
6: The function f(x) = �e�x satis�es the desired inequality for n = 4: We
prove that the inequality cannot hold for all x when n = 3 or n = 7; in fact
the same is true when n � 3(mod 4): As a �rst step we show that there is no
twice continuously di¤erentiable function g : R ! R such that g(x)g00(x) < 0
for all x: Indeed, if such function exists then g and g00 have no zeros and have
constant signs on R: Changing g to �g if necessary we may suppose g(x) < 0
for all x and g00(x) > 0 for all x: g is then strictly convex. It is the upper
envelop of its tangent lines, i.e. it has the form g(x) = supfaix + bi : i 2 Ig:
We have aix + bi < 0 for all real x which implies ai = 0 for all i: Thus g is a
constant and g00 � 0, a contradiction. Now suppose n � 3(mod 4) and there
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exist an n� times continuously di¤erentiable function f : R ! R such that
f(x)f 0(x):::f (n)(x) < 0 for all x 2 R: Then each of the functions f (j); 0 � j � n
have constant signs on R: By what we just proved f (j) and f (j+2) have the
same sign for 0 � j � n � 2: It follows that f 0(x)f (3)(x):::f (4m+3)(x) and
f(x)f (2)(x):::f (4m+2)(x) (where n = 3 + 4m) are both > 0 provided f 0 > 0:
Multiplying thes two we see that f(x)f 0(x):::f (n)(x) > 0: Note that the desired
inequality doesn�t change if we replace f by �f: So there is no loss of generality
in assuming that f 0 > 0 and the proof is complete when n � 3(mod 4): What
happens for other values of n? Note that if n(n+1)2 is odd then f(x) = e�x serves
as an example. if 4jn then f(x) = �e�x serves as an example. n � 2(mod 4) or
n � 1(mod 4)) n(n+1)

2 is odd.

Problem 198

If x1; x2; :::; xn 2 R2; x1+ x2+ :::+ xn = 0; n � 2 and kxik � 1 8i show that
kxi + xjk � 1 for some i and j:

W.l.o.g xi 6= 0 for all i: By a rotation we may assume that x1 is on the
positive x�axis: If each xj is on the x�axis then one of them, say xj must be
on the negative x�axis and kx1 + xjk � 1: In the contrary case at least one
xj is on the (open) upper-half plane. [Otherwise Im[x1 + x2 + ::: + xn] � 0
which implies that all the vectors are on the x�axis]. Let x2 be the one in the
upper-half plane with maximum angle with the positive x�axis. If �2 � 2�

3 then
kx2 + x1k2 = kx2k2+kx1k2+2 kx1k kx3k cos(�2�0) � kx2k2+kx1k2�kx1k kx2k
� kx1k2 � 1 if kx2k � kx1k and a similar argument holds if kx1k � kx2k :

Assume now that �2 < 2�
3 :

There must be another xi; call it x3 such that �3 > �2 where �j is the angle

made by xj with the positive x� axis. To see this note that
nX
j=1

kxjk ei(�j��2) = 0

and �j � �2 8j would imply sin(�j � �2) = 0 and �j � �2 2 f0; �;��g for all j
forcing all the x0js to be on the x�axis. Thus 0 = �1 < �2 <

2�
3 and �2 < �3:

But �2 is the largest of the angles �j corresponding to the x0js in the upper-half
plane. it follows that �3 � �: Now consider the cases �3 � 4�

3 and �3 < 4�
3 :

In the �rst case cos(�3 � �2) � � 1
2 and in the second case cos(�3 � �1) � � 1

2 :
In these cases we get (respectively) kx2 + x3k � 1 and kx3 + x1k � 1: This
completes the proof.

Problem 199

Let x1; x2:x3; x4;x5; x6 be vectors in � � fx 2 R2 : kxk � 1g whose sum is
0: Show there are three vectors among these whose sum belongs to �:

By previous problem the sum of two of these is in �: Let x1 + x2 2 �:
Consider the 5 vectors x1+x2; x3; x4;x5; x6: By previous problem again the sum
of two of these is in �: If the sum x1+x2+xj ; 3 � j � 6 we are done. Suppose
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two of x3; x4;x5; x6 have a sum in �: Take these as x3 and x4: For simplicity
we write xij for xi + xj : Thus x12 and x34 both belong to �: Once again we
apply previous problem to fx12; x34; x5; x6g and note that the only case where
a proof is required is when x56 2 �: Among the vectors x12; x34; x56 there must
be two such that the angle between them does not exceed 2�

3 : [ This is true
for any three vectors!]. W.l.o.g assume that these are x12 and x34: Rotate the
vectors so that the positive x-axis is bisects the angle between these two and
rename them, if necessary so that x12 is in the lower half plane. Let �ij be the
�signed�angle between xij and the positive x�axis with �� � �ij < �: Then
�12 = ��; �34 = � with 2� � 2�

3 : Note that x12 is in the fourth quadrant and
x34 is in the �rst quadrant. At least one of x5; x6 must be in the left half plane
since the sum of all x0is is 0: Assume that x5 is in the left half plane. If x5 is in the
upper half plane then the angle between x12 and x5 is the smaller of the numbers
�+� and 2����� where � is the angle made by x5 with the positive x�axis.
This angle is at least 2�

3 provided � > �=6: In this case kx1 + x2 + x5k � 1:
Similarly, if x5 is in the lower half plane then kx3 + x4 + x5k � 1 provided
� > �=6: To �nish the proof we consider the case � � �=6: Here < x12; x34 >

> 0:We have kx12 + x5k2+kx34 + x5k2+kx12 + x6k2+kx34 + x6k2 = 2[kx5k2+
kx6k2 + kx12k2 + kx34k2+ < x5 + x6; x12 + x34 >]

= 2[kx5k2 + kx6k2 � 2 < x12; x34 >] � 4 which implies that one of the four
terms is � 1:

Problem 200

Show that there is no expanding continuous map from R3 to R2: [ f : R3 !
R2 is expanding if kf(x)� f(y)k � kx� yk for all x; y].

We prove that if (X; d) and (Y; �) are metric spaces and if there is an ex-
pand map from X to Y then the Huasdor¤ dimension of X does not exceed
the Hausdorf dimension of Y: This would show that there is no expanding map
from Rm to Rn if m > n because the Hausdor¤ dimension of Rn is n: [ Re-
call de�nition of Hausdor¤ dimension: let A � X and consider H(A; a) =
lim
�!0

inff
X
n

f(diam(Un)ga : A �
[
n

Un; Un is open in X; diam(Un) � � 8ng

where a > 0: Then inffa > 0 : H(A; a) = 0g is the Hausdorf dimension of
A]: Since Hausdor¤ dimension of f(X) does not exceed that of Y we may as-
sume Y = f(X): Thus f is bijective. Let g = f�1: Then g is a contraction:
kg(x)� g(y)k � kx� yk for all x; y: It follows that H(g(E); a) � H(E; a) for
all a > 0: Hence the dimension of g(E) does not exceed the dimension of E: In
particular the dimension of X does not exceed the dimension of Y:

Problem 201

Let f : [0; 1]! [0; 1] be continuous with

1Z
0

f(x)dx = 0: Show that a2f(a) =
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aZ
0

(x+ x2)f(x)dx for some a 2 (0; 1):

Let g(x) = x2f(x)�
xZ
0

(y2+y)f(y)dy:We have to show that this continuous

function vanishes somewhere in (0; 1):
We prove that there exist a; b 2 [0; 1] such that g(a) < 0 and g(b) > 0:

This would �nish the proof. Now, g(x) � x2f(x)�m

xZ
0

(y2 + y)dy = x2f(x)�

m(x
3

3 +
x2

2 ) = x2m � m(x
3

3 +
x2

2 ) < 0 if f(x) = m � minff(t) : 0 � t � 1g:

[ We used the fact that m < 0 which follows from

1Z
0

f(x)dx = 0]: Similarly,

g(x) � x2f(x)�M
xZ
0

(y2+y)dy = x2M�M
xZ
0

(y2+y)dy = x2M�M(x33 +
x2

2 ) > 0

if f(x) = M � maxff(t) : 0 � t � 1g: We have �nished the proof. Note that

the hypothesis

1Z
0

f(x)dx = 0 can be replaced by the weaker hypothesis M > 0

and m < 0:

Problem 202

Let X be a normed linear space over R and T : X ! X satisfy T (x+T (y)) =
Tx + y for all x; y 2 X: Prove that if supfkTxk : kxk = 1g < 1 then T is a
continuous linear map with T 2 = I:

We have T (T (0)) = T0 = T (�T0+T0) = T (�T0)+T0: Hence T (�T0) = 0:
If Ty = 0 then Tx = Tx+y so y = 0: Taking y = �T0 we see that T0 = 0: Hence
T (0+Ty) = T0+y = y: In other words, T 2 = I: Now T (x+y) = T (x+T 2y) =
Tx+Ty: Thus T is additive. Hence T (ax+ by) = aT (x)+ bT (y) if a; b 2 Q: Let
M = supfkTxk : kx = 1kg: Let x 6= 0 and u be a vector linearly independent of
x: Consider

x+ r ax+bu
kax+buk

 for (a; b) 2 R2nf(0; 0g: Taking b = 0 and a = �1 we
see that

x� r x
kxk

 = kxk � r belong to the range of this continuous function

of (a; b): If 0 < r < kxk and � is a rational number in (kxk � r; kxk + r) then

there exists (a; b) 2 R2nf(0; 0g such that
x+ r ax+bu

kax+buk

 = �: [ This follows

from connectedness of R2nf(0; 0g]. Note that kvk 2 Q) kTvk = kvk
T v

kvk

 �
M kvk : Thus taking v = x + r ax+bu

kax+buk we get
Tx+ rT ( ax+bu

kax+buk )
 � M�: By

triangle inequality this yields kTxk � M� + jrjM < M� + kxkM � (kxk +

94



r)M +kxkM: Letting r ! 0 through positive rationals we get kTxk � 2M kxk :
The rest is obvious.

Problem 203

Let f : [0; 1] ! R be continuous and non-constant. Let m and M be the

minimum and maximum of f on [0; 1]: If

1Z
0

f(x)dx = 0 show that

������
1Z
0

xf(x)dx

������ �
�mM
2(M�m) :

Let F (x) = mI[0;M ]+MI(M;�] where M �m = �: [ Note that m < 0 < M ].
We may suppose (by multiplying f by a positive number and changing f to

�f if necessary) that � = 1 and

1Z
0

xf(x)dx > 0: We have

1Z
0

xF (x)dx =

MZ
0

xF (x)dx +

1Z
M

xF (x)dx = mM2

2 +M 1�M2

2 = �mM
2 = �mM

2(M�m) : It su¢ ces to

show that

1Z
0

xf(x)dx �
1Z
0

xF (x)dx: Since

1Z
0

F = 0 we have 0 = M

1Z
0

(f(x) �

F (x))dx =M

MZ
0

(f(x)� F (x))dx+M
1Z

M

(f(x)� F (x))dx

�
MZ
0

x(f(x)� F (x))dx+
1Z

M

x(f(x)� F (x))dx =
1Z
0

x(f(x)� F (x))dx:

Problem 204

Show that any function f : R ! R is the composition of two Lebesgue
measurable functions.

Let h(
X

an
2n ) = (

X
2an
3n ); g(

X
2an
3n ) = f(

X
an
2n ). Make g linear in each of

the intervals removed in construction of Cantor�s ternery set.

Problem 205

Say that a function f : R! R is Cesaro continuous if c�lim an = a) c�lim
f(an) = f(a): [c � lim an = a means a1+a2+:::+an

n ! a]. Find all Cesaro
continuous functions R! R.

Considering sequences of the type fx; y; x; y; :::g we see that f(x+y2 ) =
f(x)+f(y)

2 .
Also, fx : f(x) � ag is closed for each a. Thus, f is measurable and hence it
must be a¢ ne.
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Problem 206

Let f : R ! R be continuous. if
Z
fg" � 0 for every non-negative C2

function g with compact support show that f is convex.

Fix �;� and approximate f by a polynomial on [��;�] to within �. Use
integration by parts to conclude that

Z
p0"g � 0; conclude that p is convex.

Problem 207

Let � be a real measure on the Borel ��algebra of R such that �(I) = 0 for
every interval of length 1 or

p
2. Show that � is the zero measure.

�(I) is zero of I is an interval whose length is a positive integer or a positive
integral multiple of

p
2. Hence it is zero if m(I) = n�m

p
2 or m(I) = m

p
2�n

where n and m are positive integers. But fn +m
p
2 : n;m integersg is dense.

Hence there are arbitarily small positive numbers � such that �(I) = 0 for
intervals of length �. It follows that �fxg = 0 for all x and that �(I) = 0 for
any interval I.

Problem 208

Say that functions f and g : R! R are similar if there is a function h : R!
R which is bijective and f = h�1 � g �h. Prove that sin and cos are not similar.
Find all numbers a; b such that x2 is similar to x2 + ax+ b.

If x2 is similar to x2 + ax + b then there is a bijection h of R such that
h(x2 + ax + b) = [h(x)]28x. Let h(c) = 0. Then c2 + ac + b = c since h
maps both these points to 0. Also x2 + ax + b = c has at most one root
since h is 0 at these roots. This equation has c as a root becuase h is 0 at
bith sides of this equation. Hence the equation has equal roots. Therefore,
a2 = 4(b � c). We get a2 = �4(c2 + ac) which means (a + 2c)2 = 0. Thus
a2 = 4(b� c) = 4(b+ a=2) = 4b+2a. Note that if this last condition holds then
a bijection h satisfying h(x2 + ax+ b) = [h(x)]28x exists: take h(x) = x+ a=2.
Thus x2 is similar to x2 + ax+ b if and only if a2 = 4b+ 2a: What about sinx
and cosx?

Problem 209

If f and g are continuous functions : R ! R which are periodic with pe-

riod 1 show that

1Z
0

f(x)g(ny)dy !
1Z
0

f(x)dy

1Z
0

g(x)dy. [This is called Fejer�s

Theorem].
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By a simple change of variable this can be converted to the case where the
period is 2� and the the range of integrals is from 0 to 2�. We can appriximate f
and g by trigonometric polynomilas (e.g. cesaro averages of their Fourier series)
so it is enough to consider the case when f(x) = eikx and g(x) = eimx. In this
case direct evaluation gives the result.

Problem 210

Find lim

1Z
0

xnf(x)dx

1Z
0

xng(x)dx

for continuous functions f and g on [0; 1] with g > 0 on

[0; 1].

Make a change of variable. Ans.: f(1)g(1) .

Problem 211

Suppose ffng is a decreasing sequence of non-negative continuous functions
on [0; 1] such that whenever f is continuous and fn � f � 0 we have f(x) = 08x.

Can we conclude that

1Z
0

fn(x)dx! 0?

No! Let U be an open set containing every rational number, with measure
1=2. [Enough to construct and open set V containing rationals with measure
not exceeding 1=2; we can take U to be V [ (0; x) for a suitable x: For on
[0; 1] we can take the union of su¢ clently small intervals around rationals]. Let

fn(x) = [1 � d(x;U c)]n: Then

1Z
0

fn(x)dx �
Z
Uc

1dx = 1=28n. However, if f

is as in the statement of the problem then f(x) = 0 whenever d(x; U c) > 0
i.e. whenever x 2 U . In particular f = 0 on Q and continuity forces f to be
identically 0.

Problem 212

Prove that an+bn
an+cn

! 1 if cn 6= 0; an + cn 6= 08n;�1 is not a limit point
of fancn g and

bn
cn
! 1. Give an example to show that the condition that �1 is

not a limit point of fancn g cannot be dropped. [If an; bn; cn are all > 0 then the
condition can be dropped and the only hypothesis is bn

cn
! 1!]

For the counter-example take an = 1
n4 �

1
n ; bn =

1
n2 +

1
n ; cn =

1
n .
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Problem 213

If fang is a sequence in Rnf0g show that there is a subsequence fankg such
that fank+1ank

g converges to 0; 1 or 1:

First choose a subsequence that converges to -1 or1 or a �nite limit (which
may be 0 or non-zero).

Problem 214 [See also Problem 86 above]
Let (X; d) be a metric space. Show that the following are equivalent:
a) Every continuous map f : X ! R is uniformly continuous
b) The distance between any two disjoint closed in X is positive.

a) implies b): Suppose A and B are disjoint closed sets with d(A;B) = 0:
There is a continuous function f : X ! [0; 1] such that f(A) = f0g and f(B) =
f1g. By a) f is uniformly continuous. By Problem 86 above d(f(A); f(B)) = 0:
This gives the contradiction j1� 0j = 0:
b) implies a): Suppose f : X ! R is continuous but not uniformly con-

tinuous. By Problem 86 there exists sets A and B such that d(A;B) = 0 but

d(f(A); f(B)) > 0: We calim that the closed sets
�
A and

�
B are disjoint. If

x 2
�
A \

�
B then there exist sequences fang; fbng contained in A and B respec-

tively both converging to x: Now jf(an)� f(bn)j � d(f(A); f(B)) > 0 for each

n which contradicts the fact that f(an) and f(bn) both tend to f(x). Thus
�
A

and
�
B are disjoint. By b) d(

�
A;

�
B) > 0. However d(

�
A;

�
B) � d(A;B) = 0.

Problem 215 [ See also Problem 86 and Problem 214]

Let (X; d) be a metric space which has at most �nitely many isolated points.
If every continuous function f : X ! R is uniformly continuous show that X is
compact.
Remark: the example X = N shows that the assumtion on isolated points

cannot be dropped]

Remark: if every real continuous function on a subset A of a metric space X

is uniformly continuous then the subset is necessarily closed: if x 2
�
AnA then

y ! 1
d(x;y) is a continuous function on A which is not uniformly continuous. [ If

fxng � A and xn ! x then d(xn; xm)! 0 but f 1
d(x;xn)

g is not Cauchy because
it is not bounded]
Suppose X has a sequence fxng with no convergent subsequence. Choose

positive numbers �n; n = 1; 2; ::: such that B(xn; �n) does not contain any xm
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with m 6= n and �n < 1
n 8n: Since xn is not an isolated point for n su¢ -

ciently large (say, for n � N) we can �nd distinct points xn;m;m = 1; 2; ::: in
B(xn; �n)nfxng converging to xn asm!1 (for n = N;N+1; :::). We may sup-
pose d(xn;m; xn) < 1

n 8n;m: Let A = fxn;n : n � Ng and B = fxn : n � Ng.
Claim: A is closed. Suppose xnj ;nj ! y. Then d(y; xnj ) � d(y; xnj ;nj ) +
d(xnj ;nj ; xnj ) < d(y; xnj ;2mj ) + �nj ! 0. Thus xnj ! y: Since fxng has no
convergent subsequence it follows that fnjg is eventually constant and hence
y = lim

j
xnj ;nj belongs to A: Clearly B is also closed. Further, A \ B = ;. Let

f : X ! [0; 1] be a continuous function such that f(A) = f0g and f(B) = f1g.
By hypothesis f is uniformly continuous. Note that d(A;B) � d(xn; xn;n) <

1
n

8n: Thus d(A;B) = 0 and, by problem 86, d(f(A); f(B)) = 0: This contradicts
the fact that f(A) = f0g and f(B) = f1g. This contradiction shows that X is
compact.

Problem 216
Let f be a fucntion from R to R. If the restriction of f to Q [ fxg is

continuous for each irrational number x show that f is continuous.

Let x 2 R; � > 0 and consider g�1[f(x)��; f(x)+�] where g is the restriction
of f to Q[fxg. This set is open in Q[fxg and it contains x: Hence there exists
� > 0 such that if q is any rational number in (x� �; x+ �) then jf(q)� f(x)j �
�. Combined with the hypothesis this shows that y 2 (x � �; x + �) implies
jf(y)� f(x)j � �.

Problem 217

Let A be a closed subset of a metric space (X; d) and f : A! [1; 2] be a con-
tinuous function. Let F (x) = f(x) if x 2 A and F (x) = 1

d(x;A) infff(y)d(x; y) :
y 2 Ag if x =2 A. Show that F is a continuous extension of f to X:

Let fxng ! x. If x =2 A then xn =2 A for all n su¢ ciently large and
1

d(xn;A)
infff(y)d(xn; y) : y 2 Ag ! 1

d(x;A) infff(y)d(x; y) : y 2 Ag as n ! 1.
Indeed, d(xn; A)! d(x;A) > 0 and f(y)d(xn; y) � f(y)d(x; y)+f(y)d(xn; x) �
f(y)d(x; y)+2d(xn; x). Taking in�mum over y 2 A and using a similar inequality
in the reverse direction we get F (xn)! F (x): Now let x 2 A. We may split fxng
into two parts, one contained in A and the other in Ac; and, using continuity of
f we mat reduce the proof to the case xn =2 A for any n: We have to show that

�n � 1
d(xn;A)

infff(y)d(xn; y) : y 2 Ag ! f(x). We �rst prove that

lim sup
n

�n � f(x). We can �nd yn 2 A with d(xn; A)(1 +
1
n ) > d(xn; yn)

and �n � 1
d(xn;A)

f(yn)d(xn; yn) < (1 + 1
n )f(yn). Also note that d(xn; A) !

d(x;A) = 0 so yn ! x. This gives lim sup
n

�n � f(x). Now infff(y)d(xn; y) :

y 2 Ag+ 1
n > f(yn)d(xn; yn) for some yn 2 A. Thus �n >

f(yn)d(xn;yn)
d(xn;A)

. In par-

ticular 2 � f(x) � lim sup
n

�n � lim sup
n

d(xn;yn)
d(xn;A)

which implies that d(xn; yn)! 0
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and hence that yn ! x. Thus, if � > 0 is given then �n >
f(yn)d(xn;yn)

d(xn;A)
> �n >

(f(x)��)d(xn;yn)
d(xn;A)

� (f(x)��) for n su¢ ciently large proving that lim inf
n

�n � f(x).

The proof is complete.
Remark: the range [1; 2] can be replaced by any [a; b] with a < b. It can

also be replaced by any open interval or the whole line R. Here is a proof when
the range is (�1; 1) : Let G be a continuous extension of f to X with values
in [�1; 1]. Let C = G�1f�1; 1g. Then A and C are disjoint closed sets and
hence there is a function � : X ! [0; 1] such that �(A) = f0g and �(C) = f1g.
Let F = (1 � �)G. Then jF (x)j � 1 for all x and equality can hold only when
jG(x)j = 1 and �(x) = 0. But there is no x satisfying there properties and F is
the desired extension.

Problem 218
Show that [0; 1] cannot be expressed as a countable union of (more than one)

non-degenerate closed intervals. Show that the same is true of (0; 1):
[ Problem 229 below contains a stronger result. Obviously, �countable �can

be dropped]

Suppose [0; 1] =
[
n

[an; bn] with /an < bn 8n and [an; bm] \ [an; bm] = ; for

n 6= m. Note that any collection of non-degenerate intervals is countable since
such intervals contain at least one rational number. Let U =

[
n

(an; bn) and

D = [0; 1]nU . Then D � fan : n � 1g [ fbn : n � 1g. Since any perfect set
in R is uncountable [Theorem 6.65 of Real and Abstract Analysis by Hewitt
and Stromberg] we can complete the proof by showing that the closed set D is
perfect. Suppose x is a isolated point of D: Suppose x = ak for some k. We can
choose � > 0 such that � < bk�x and (x��; x+�)\D = fxg. The point x��=2
is in some [an; bn]: If bn � x+� the we see that x+�=2 2 [ak; bk]\ [an; bn] which
forces k and n to be equal. But x � �=2 < x = ak = an contradicting the fact
that x� �=2 is in some [an; bn]: Thus bn < x+ � and bn 2 (x� �; x+ �) [Indeed,
x � � < x � �=2 � bn; x + �]. But then bn 2 (x � �; x + �) \ D = fxg. Thus
x = ak = bn. If n = k this contradicts the fac that [ak; bk] is non-degenerate
and if n 6= m this contradicts the fact that [ak; bk] \ [an; bn] = ;. This �nishes
the proof when x is a left end point of one the intervals [an; bn]; n = 1; 2; ::: and
a similar argument holds when it is a right end point.
Now suppose an open interval (a; b) is a disjoint union of non-degenerate

closed intervals. Then, using the fact that [a�1; b+1] = [a�1; a][(a; b)[[b; b+1]
we can express [a� 1; b+ 1] in a similar way which is a contradiction.

Problem 219

If every real continuous function on a topological space is bounded then
every real continuous function on it attains its supremum (and in�mum).

If M = supff(x) : x 2 Xg then 1
M�f is continuous but not bounded.
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Problem 220

Show that X = [0; 1][0;1] with the product topology is separable.

Let k 2 N and J1; J2; :::; Jk be k disjoint closed intervals with rational end
points contained in [0; 1]. Let r1; r2; :::; rk 2 Q. De�ne x 2 X by x(t) = rj
for all t 2 Jj ; 1 � j � k and x(t) = 0 if t does not belong to any Jj . This
de�nes a countable collection of points in X. Consider a basic open set V =
fx : x(t1) 2 U1; x(t2) 2 U2; :::; x(tk) 2 Ukg in X where k is a positive integer, t0is
are distinct points of [0; 1] and U 0is are open sets in R. There exist disjoint closed
intervals with rational end points containing t1; t2; :::; tk. Pick rational numbers
r1; r2; :::; rk in U1; U2; :::; Uk. De�ne x 2 X by x(t) = rj for all t 2 Jj ; 1 � j � k
and x(t) = 0 if t does not belong to any Jj . Then x belongs to the countable
collection we just de�ned. Also this point lies in the basic open set V . This
completes the proof.
Second proof: we prove that polynomials with rational coe¢ cients are dense

in X. Any basic open set fx : x(t1) 2 U1; x(t2) 2 U2; :::; x(tk) 2 Ukg contains
polynomial with rational coe¢ cients: there is a continuous function in this set
and this function can be approximated uniformly on [0; 1], hence on ft1; t2; :::; tkg
by a polynomial with rational coe¢ cients.

Problem 221

Show that X = [0; 1]I with the product topology is not separable if the
cardinality of I exceed the cardinality of power set of N:

Let D be a dense subset of X. With each i 2 I associate the subset D \
p�1i (0; 1) of D where pi : X ! [0; 1] is the projection map pi(x) = xi. We claim
that this map is one-to-one. If i1 6= i2 then the dense set D must intersect
the non-empty open set p�1i1 (0; 1) \ p

�1
i2
(1; 2). If x 2 p�1i1 (0; 1) \ p

�1
i2
(1; 2) \ D

then x 2 p�1i1 (0; 1) \Dnp
�1
i2
(0; 1) \D and hence p�1i1 (0; 1) \D 6= p�1i2 (0; 1) \D.

This proves our claim and shows that the cardinality of I does not exceed the
cardinality of the power set of D.

Problem 222

Prove or disprove: if X is a compact metric space and X =
[
i2I

Ui where

each Ui has non-empty interior then X is covered by a �nite number of U 0is.

False: let X = [0; 1]: Let Un = [ 1
n+1 ;

1
n ]; n = 2; 3; ::: and U0 = [ 12 ; 1] [ f0g

then
U0 [ U1 [ U2 [ ::: [ UN does not contain 1

N+2 :

Problem 223

The one point compacti�cationX of N is metrizable. Find a metric explicitly.
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d(n;m) =
�� 1
n �

1
m

�� ; d(n;1) = 1
n :

Problem 224
Find the cardinality of the Stone-Cech compacti�cation of N:

By de�nition of �(N) the cardinality of �(N) does not exceed that of [0; 1]([0;1]N)
which is 2c: Let D be a countable dense subset of [0; 1][0;1]. [ See problem 220
above]. Let f : N ! D be a bijection. Since f is continuous and [0; 1][0;1] is
a compact Hausdor¤ space there is a continuous function F : �(N) ! [0; 1][0;1]

which extends f . Since N is dense in �(N) and the range of F is compact it
follows that F is onto. Hence the cardinality of �(N) is at least equal to that of
[0; 1][0;1] which is 2c. Hence the cardinality of �(N) is exactly 2c.

Problem 225

Let (X; d) be a metric space and A be a subset of X such that A\K is open
in K for every compact set K. Show that A is open in X.

If x belongs to the closure of Ac then there is a sequence fxng in Ac converg-
ing to x. Let K = fx; x1; x2; :::g. Then K is compact and fxng is a sequence in
the closed set Ac \K converging to x. Hence x 2 Ac \K. In particular x 2 Ac.
Thus Ac is closed.
[ X can be any �rst countable Hausdor¤ space for this proof to be valid. A

simpler argument shows that X can also be a locally compact Hausdorf space].

Problem 226

Let A be a G� in R. Show that there is a continuous function f : R ! R
such that f is continuous at all points of A and discontinuous at all points of
Ac.
See Problem 260 below for another construction.
[ Such a function can exists only if A is a G�].

Proof: let A be a G� in R. Let B = Ac. Write B as a disjoint union of sets
E1; E2; ::: such that E1 [ E2 [ ::: [ En is a closed set Cn for each n. [ Let B =
C1[C2[::: with each Cn closed and let E1 = C1; En = CnnfC1[C2[:::[Cn�1g

for n � 2]. Let f(x) =

8>><>>:
0 if x 2 A

1
n if x 2 Enn(E

0
n)

1
n+1 if x 2 E

0
n \Q

1
n+2 if x 2 E

0
nnQ

:

Note that if x =2 A then x 2 En for a unique n and x 2 Enn(E0n) or
x 2 E0n \ Q or x 2 E0nnQ. Thus, f is a well de�ned function from R to R. If
x 2 A and xj ! x then f(x) = 0 and f(xj) � 1

nj
if xj 2 Enj ( or xj 2 A).

To show that f is continuous at x we only have to show that nj ! 1. If this
is false then there is an integer k and a subsequence fjlg of f1; 2; :::g such that
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xjl 2 Ek � E1 [ E2 [ ::: [ Ek for each l. But the union is here is closed and
hence x 2 E1[E2[ :::[Ek � B which is a contradiction. Thus, f is continuous
at each point of A.
Now let x 2 B. Then x 2 En for some n. To prove that f is not continuous

at x we prove that if V is any neighbourhood of x which intersects En then f
is not a constant on V . [ If f is continuous at x then for any � > 0 there is a
neighbourhood V of x such that jf(x)� f(y)j < � for all y 2 V . We choose �
as follows: f(x) (which belongs to f 1n ;

1
n+1 ;

1
n+2g) has positive distance � from

f 1j :
1
j 6= f(x)g. Let 0 < � < �. If y 2 V and f(y) 6= f(x) then f(y) is 1

j for
some 1

j 6= f(x) and so � < jf(x)� f(y)j ; a contradiction. Thus f is constant
on V ]. Now, if V \ E0n 6= ; then V \ E0n \ Q 6= ; and V \ E0nnQ 6= ;. Thus
there is points y1; y2 of V such that f(y1) = 1

n+1 and f(y2) =
1

n+2 . Thus f
is not a constant on V . Now let V \ E0n = ;: Let y 2 V \ En � @En. Then
V \ (E1 [E2 [ :::[En�1)c 6= ;. [ In fact, y 2 V \ (E1 [E2 [ :::[En�1)c]. Thus
V \(E1[E2[ :::[En�1)c is a neighbourhood of y. Since y 2 @En it follows that
V \ (E1 [E2 [ :::[En�1)c \Ecn 6= ;. Let z 2 V \ (E1 [E2 [ :::[En�1)c \Ecn.
Then f(z) = 0 or f(z) = 1

j with j � n + 1: In particular, f(z) � 1
n+1 . But

f(y) = 1
n and hence f(y) 6= f(z) completing the proof.

Remark: the result holds in any topological space which contains a set D
such that D and Dc are both dense: we can replace Q by D in above proof. No
space with an isolated point can have such a set and it is known that any �rst
countable space without isolated points and any locally compact Hausdorf space
without isolated points contains such a set. Ref: Sets of Points of Discontinuity
by Richard Bolstein, Proceedings of AMS, Vol.38,No.1, 1973.

Problem 227

Show that there is a metricD on R such that jxn � xj ! 0 impliesD(xn; x)!
0 ( equivalently every open set for D is open for the usual metric) and (R; D)
is compact.
Consider the one-point compacti�cation X = (Rnf0g) [ f1g of Rnf0g. [

Neighbourhoods of1 are complements of compact subsets of Rnf0g]. The map
f : R! X which is identity on Rnf0g and maps 0 to1 is a continuous bijection.
[Indeed, if xn ! 0 in R and U is a neighbourhood of 1 then U c is a compact
subset of Rnf0g and hence xn =2 U c for n su¢ ciently large]. De�ne D(x; y) =
d(f(x); f(y)) where d is a metric for X. X is metrizable because Rnf0g is second
countable and there is a countable local base at 1 : f[�N;N ]n(� 1

N ;
1
N ) : N =

1; 2; :::g is a countable base at 1. Thus X is a second countable compact
Hausdorf space and hence a compact metric space.
[ The argument can be modi�ed to prove a general result: any locally com-

pact separable metric space has a smaller metrizable topology which makes it
compact (cf. page 188, Exercise 113, of Wilansky). Also, if X is locally com-
pact and Hausdor¤ then there exists a smaller topology on X which makes it a
compact Hausdor¤ space: let x 2 X and Y = (Xnfxg) [ f1g be the one-point
compacti�cation of Xnfxg. Let f : X ! Y be de�ned by f(y) = y if y 2 Xnfxg
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and f(x) =1. If V is an open set containing1 then V c is a compact subset of
Xnfxg: We claim that this set is contained in the interior of another compact
subset H of Xnfxg. This is an easy consequence of the fact that X is a locally
compact Hausdor¤ space. Now XnH is a neighbourhood of x and f(XnH) � V .
Thus f is continuous: The weakest topology on X which makes f continuous is
the required topology.]

Problem 228

Let f : C ! C be a continuous map such that f(z)
z ! 1 as z ! 1. Show

that f must vanish somewhere.

Let � be such that
��� f(z)z � 1

��� < 1 for jzj � �. Let N be a positive integer

such that N > � and N > supfjf(z)� zj : jzj � �g. If jzj � N then either
jzj � � or � < jzj � N . In the �rst case jf(z)� zj � N and in the second case
jf(z)� zj < jzj � N . Thus jzj � N implies jf(z)� zj � N . By Brower�s Fixed
Point Theorem the function z � f(z) must have a �xed point.

Problem 229

Show that [0; 1] cannot be written as a countable disjoint union of two or
more non-empty closed sets.
Conclude that a countable T1 space contains no non-constant path.

The second part follows immediately from the �rst: if  is a non-constant
path then inverse images of singletons sets in the range of  shows that [0; 1]
can be written as a countable disjoint union of two or more non-empty closed
sets.

Now suppose [0; 1] =
1[
n=1

Cn where each Cn is closed and non-empty and

Cn \Cm = ; for n 6= m. [ Note that [0; 1] cannot be written as a �nite disjoint
union of two or more non-empty closed sets. This is clear since these closed
would also be open congtradicting connectedness of [0; 1]]. By BCT at least one

Cn has non-empty interior. Let A = [0; 1]n
1[
n=1

C0n. Clearly A is closed and

A =
1[
n=1

@Cn: We claim that its interior is empty: if [a; b] � A with a < b then,

by BCT again, there is an open interval I � [a; b] and an integer k such that I �
@Ck. But Ck is closed and hence @Ck has empty interior. This proves our claim.

Now A =
1[
n=1

@Cn and another application of BCT shows that there is an open

interval (�; �) such that (�; �)\A is non-empty and contained in @Cj for some j.
To complete the proof we show that there is at least one point in (�; �)\(An@Cj).
Note that (�; �)\Ccj is open and non-empty. [ Let x 2 (�; �)\A. Then x 2 @Cj
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and (�; �) is a neighbourhood of x so this neighbourhood must intersect Ccj ].
If (�; �)\Ccj is contained in A then A would have interior points contradicting
the claim above. Thus (�; �) \ Ccj intersects Ac. Let y 2 (�; �) \ Ccj \ Ac.

Note that y 2 [0; 1] =
1[
n=1

Cn and y 2 Ac. By de�nition of A we see that

y 2 C0m for some m. Observe that (�; �) \ Ac \ @Cm = ; since @Cm � A. We
are trying to prove that (�; �) \ (An@Cj) is non-empty. If this set is empty
then (�; �) \ A � @Cj � Cj which implies that (�; �) \ A \ @Cm = ;. [
Note that y 2 Ccj \ C0m and hence m 6= j]. Now (�; �) \ Ac \ @Cm = ; and
(�; �)\A\ @Cm = ; together yield (�; �)\ @Cm = ; and so (�; �) is the union
of its intersection with C0m and Cem ( the exterior of Cm). By connectedness of
this interval and the fact that y 2 (�; �)\C0m we conclude that (�; �)\Cem = ;.
But this means (�; �) � Cm. This implies that (�; �) � C0m and hence (�; �)
has no intersection with A. But x 2 (�; �) \A and this �nishes the proof.
We give another proof of the �rst part. This proof does not use BCT. suppose

[0; 1] =
1[
n=1

Cn where each Cn is closed and non-empty and Cn \ Cm = ; for

n 6= m. If U2 = fx : d(x;C2) < 1
2d(C1; C2) then U2 is open, C2 � U2 and

�
U2\C1 = ;. Pick a point in C2 and consider the component of that point in

�
U2.

Thus A2 intersects C2 but does not intersect C1. A2 is a closed interval. We
claim that it contains at least one boundary point of U2. Otherwise, A2 � U2
and since A2 is a compact interval it cannot be maximal: there is a larger
open interval between A2 and U2. If x is a point of A2 which is in @U2 then
x =2 C2 (because C2 is contained in the open set U2). Thus, A2nC2 6= ;. Also

A2nC2 =
1[
n=3

(A2 \ Cn)because A2 \ C1 �
�
U2 \ C1 = ;. Now A2 \ Cn 6= ;

for at least one n > 2: We repeat the above argument for the interval A2. By
induction we get a sequence of compact intervals A2; A3; ::: such that An+1 � An
and An \Cn�1 = ;. There must be a point in the intersection of these intervals
and that point cannot belong to any Cn. This contradiction completes the proof.

Problem 230

Let f : (X; d)! (Y; �) be a continuous and closed map. If y 2 Y show that
@f�1fyg is compact.

Let fxig be a sequence in @f�1fyg. For each positive integer n the set
B(xn;

1
n ) \ f

�1(B(y; 1n )) is an open set containing xn ( because @f
�1fyg �

f�1fyg) and since xn 2 @f�1fyg there must be a point zn in this open set which
does not belong to f�1fyg). Thus zn 2 f�1(B(y; 1n )nfyg) and d(zn; xn) <

1
n .

Let A = fz1; z2; :::g. Note that f(zn)! y and hence y belongs to the closure of
f(A). However y =2 f(A). Since f is continuous and closed the closure of f(A) is

same as f(
�
A). Thus A is not closed. [ Because y belongs to the closure of f(A)
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and y =2 f(A)]. Let znj ! u with u =2 A. Then xnj ! u (because d(zn; xn) < 1
n )

and hence the given sequence fxng has a convergent subsequence. [ Note that
u = limxnj necessarily belongs to @f

�1fyg because this set is closed].

Problem 231

Show that a metric space is compact if and only if it is complete under any
equivalent metric.

If X is a compact metric space then it is so under any equivalent metric,
so it is complete under any equivalent metric. Suppose now that X is a metric
space which is complete under any equivalent metric.
Suppose X is not compact. Without loss of generality assume that the

original metric d on X is such that d(x; y) < 1 for all x; y 2 X: There ex-
ists a decreasing sequence of non-empty closed sets fCng whose intersection is

empty. Let �(x; y) =
1X
n=1

1
2n dn(x; y) where dn(x; y) = jd(x;Cn)� d(y; Cn)j +

minfd(x;Cn); d(y; Cn)gd(x; y). We claim that � is a metric on X which is
equivalent to d and that (X; �) is not complete. Note that dn(x; y) � 2 for
all x; y 2 X: If x and y 2 Ck then x and y 2 Cn for 1 � n � k and hence

�(x; y) �
1X

n=k+1

2
2n =

1
2k
. Thus, the diameter of Ck in (X; �) does not exceed

1
2k
. Once we prove that � is a metric equivalent to d it follows that � is not

complete because fCng is a decreasing sequence of non-empty closed sets whose
intersection is empty.
Assuming (for the time being) that dn satis�es triagle inequlaity it follows

easily that � is a metric: if �(x; y) = 0 then d(x;Cn) = d(y; Cn) for each n
and minfd(x;Cn); d(y; Cn)gd(x; y) = 0 for each n. If d(x; y) 6= 0 it follows that
d(x;Cn) = d(y; Cn) = 0 for each n which implies that x and y belong to each Cn
contradicting the hypothesis. Thus � is a metric. Also �(xj ; x) ! 0 as j ! 1
implies jd(xj ; Cn)� d(x;Cn)j ! 0 and minfd(xj ; Cn); d(x;Cn)gd(xj ; x) ! 0 as
j ! 1 for each n. There is at least one integer k such that x =2 Ck and we
conlude that d(xj ; x)! 0. Conversely, suppose d(xj ; x)! 0. Then dn(xj ; x)!
0 for each n and the series de�ning � is uniformly convergent, so �(xj ; x) ! 0.
It remains only to show that dn satis�es triangle inequality for each n . We
have to show that jd(x;Cn)� d(y; Cn)j+minfd(x;Cn); d(y; Cn)gd(x; y)
� jd(x;Cn)� d(z; Cn)j+minfd(x;Cn); d(z; Cn)gd(x; z)+jd(z; Cn)� d(y; Cn)j+

minfd(z; Cn); d(y; Cn)gd(z; y) for all x; y; z. Let r1 = d(x;Cn); r2 = d(y; Cn); r3 =
d(z; Cn). We consider six cases depending on the way the numbers r1; r2; r3 are
ordered. It turns out that the proof is easy when r1 or r2 is the smalles of the
three. We give the proof for the case r3 � r1 � r2. (The case r3 � r2 � r1 is
similar). We have to show that

r2 � r1 + r1d(x; y) � r1 � r3 + r3d(x; z) + r2 � r3 + r3d(z; y) which says
r1d(x; y) � 2r1 � 2r3 + r3d(x; z) + r3d(z; y). Since d satis�es trangle inequality
it su¢ ces to show that r1d(x; z) + r1d(z; y) � 2r1 � 2r3 + r3d(x; z) + r3d(z; y).
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But this last inequality is equivalent to (r1 � r3)[d(x; z) + d(z; y)] � 2r1 � 2r3:
This is true because d(x; z) + d(z; y) � 1 + 1 = 2.

Problem 232

Any two countable dense subsets of R are homeomorphic.

The relative topology of a dense subset of R is same as the order topology.
We prove that if A = fa1; a2; :::g is a countable subset of R such that A has no
largest or smallest element and between any two elements of A there is another
element then there is an order isomorphism from A onto T = f j

2n : j; n 2 Zg.
This would prove that A and Q are both homeomorphic to T and hence A is
homeomorphic to Q. De�ne f : A! T as follows: (assume that a0ns are distinct)
let f(a1) = 0; f(an1) = 1 where n1 is the least integer such that an1 > a1. Let
f(an2) = 2 where n2 is the least integer such that an2 > an1 , and so on. Let
f(am1

) = �1 where m1 is the least integer such that am1
< a1; f(am2

) = �1
where m2 is the least integer such that am2

< am1
, and so on. Let f(ak1) =

1
2

where k2 is the least integer such that a1 < amk2
< an1 ; f(ak2) =

3
2 where k2

is the least integer such that an1 < ak2 < an2 , and so on. We get a strictly
increasing function from a subset of A to T . Note that if an is in the domain of
this function so is an+1 (why?). Thus, the domain is all of T .

Problem 233

Prove or disprove the following:
if (X; �) is a topological space, A is a subspace of X and U; V are disjoint

open sets in A then there are disjoint open sets U1; V1 in X such that U = U1\A
and V = V1 \A. What happens if X is assumed to be metrizable?

Let A = f0; 1g considered as a subspace of R with the co-�nite topology.
Then f0g and f1g are disjoint open sets which are intersections with A of disjoint
open sets in R ( since there are no disjoint non-empty open sets in R!): The
result is true if metrizability is added to the hypothesis. We prove a slighly
more general result: if fUigi2I is a collection of open sets in A then there exists
a collection fVig of open sets in X (indexed by I) such that whenever J is
a �nite subset of I and

\
j2J

Uj = ; we also have
\
j2J

Vj = ;. We de�ne V 0i s

explicitly as follows: Vi = fx 2 X : d(x; Ui) < d(x;AnUi)g. It is clear that Vi
is open and its intersection with A is Ui. Suppose J is a �nite subset of I and\
j2J

Uj = ;. Suppose y 2
\
j2J

Vj . Then d(y; Uj) < d(y;AnUj) for each j 2 J . For

each j there exists uj 2 Uj such that d(y; uj) < d(y;AnUj). Pick j such that
d(y; uj) = minfd(y; ul) : l 2 Jg. For some l 6= j we have uj 2 AnUl and hence
d(y; ul) < d(y;AnUl) � d(y; uj). This contradicts the choice of j.
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[ Any countable metric space withous isolated points is homeomorphic to
Q: Sierpinski, Fund. Math., 1920,11-16. Thus Q\ [0; 1] is homeomorphic to Q.
Direct proof?]

Problem 234 [ See also Problem 121 above]
Let (X; d) be a compact metric space and f : X ! P(X)nf;g be a map such

that d(a; b) � d(x; y) whenever x 2 f(a) and y 2 f(b). [ P(X) is the power set
of X]. Show that f(x) is a singleton set for each x and that f is an isometry
from X onto itself [if we write f(x) for the element of the singleton set f(x)].

Let a; b 2 X and de�ne fang; fbng to be any two sequences in X such that
an 2 f(an�1) and bn 2 f(bn�1) for each n with a0 = a; b0 = b. By compactness
of X there exists nj " 1 such that d(anj ; ank) and d(anj ; ank) ! 0 as j; k !
1: Let � > 0 and choose m such that d(anj ; ank) < � and d(anj ; ank) < �
for j; k � m. It follows by hypothesis that d(anj�nm ; a0) � d(anj ; anm) <
� and (similarly) d(bnj�nm ; b0) < � for j � m. Now d(a; b) � d(a1; b1) �
::: � d(anj�nm ; bnj�nm) < d(anj�nm ; a0) + d(a0; b0) + d(bnj�nm ; b0) < 2� +
d(a; b). Since � is arbitrary it follows that d(a; b) = d(a1; b1). This equality
holds whenever a; b 2 X and a1 2 f(a); b1 2 f(b). Taking a = bwe get a1 = b1
whenever a1; b1 2 f(a). Thus f is single valued and d(a; b) = d(f(a); f(b)) for
all a; b 2 X: This implies that the range of f is closed. It is also dense: if
x 2 X then fx; f(x); f(f(x)); :::g has a convergent subsequence and hence this
subsequence is Cauchy. It follows from the fact that f is an isometry that x can
be approximated aribtrarily closely by points in the range of f . Thus the range
is both closed and dense. It follows that f is an isometry of X onto itself.

Problem 235

Let X be a Hausdor¤ space K be a compact subset and U; V be open sets
such that K � U [V . Show that there exist compact sets K1 and K2 such that
K1 � U;K2 � V and K =K1 [K2.

Let A = KnV;B = KnU . Since A and B are compact and disjoint there
exist open sets S and T such that A � S and B � T . Replacing S and T by their
intersections with U and V respectively we may suppose S � U and T � V . Let
K2 = KnS and K1 = KnT . Note that KnS � KnA � V . Similarly, KnT � U .
Also K =K1 [K2 because S and T are disjoint.

Problem 236

There exists a compact metric space X and a homeomorphism f : X ! X
(onto) such that f is not an isometry under any equivalent metric.
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Let X = fz 2 C : jzj = 1g and f(eit) = e4�it=(2�+t) for 0 � t � 2�. Then

the n� th iterate fn of f is given by fn(t) = e
i 4�t

2�+(2n�1�1)t . Thus fn(t)! 1 as
n ! 1 for each t. If f is an isometry for some metric d compatible with the
usual topology of X then 0 = d(1; 1) = lim d(fn(t); fn(s)) = d(f(t); f(s)) for
any pair (t; s) which leads to the contradiction that f is a constant.

Problem 237
Let 
 = N;F = power set of N and Pfng = 1

2n!
for n = 2; 3; :::; Pf1g =

1�
1X
n=2

1
2n!
. Show that there are no non-constant independent random variables

on this probability space.

Let X and Y be independent random variables on (
;F ; P ) and suppose
they are both non-constant. Let E be a non-empty Borel set in R which does
not contain X(1) and F be a non-empty Borel set which
does not contain Y (1). We prove that PfX�1(E)\Y �1(F )g 6= PfX�1(E)gPfY �1(F )g.

We have PfX�1(E)g =
X

X(n)2E

1
2n!
; PfY �1(F )g =

X
Y (n)2F

1
2n!

and PfX�1(E)\

Y �1(F )g =
X

X(n)2E;Y (n)2F

1
2n!
. Let A = fn : X(n) 2 Eg and B = fn :

Y (n) 2 Fg. If PfX�1(E) \ Y �1(F )g = PfX�1(E)gPfY �1(F )g then we haveX
n2A

1
2n!

X
n2B

1
2n!

=
X

n2A\B

1
2n!
: This gives

X
n2A;m2B

1
2n!+m! =

X
k2A\B

1
2k!
. We look

at the two sides as expansions to base 2 of some number in (0; 1). We note that
n! +m! = k! + j! implies (n;m) = (k; j) or (n;m) = (j; k). To see this suppose
n is the least of the integers n;m; k; j and divide both sides by (n+1)!: We get
1

n+1 2 Z, a contradiction unless j or k equals n. If k = n then we get m! = j!

so m = j. Thus in the sum
X

n2A;m2B

1
2n!+m! each term is repeated at most twice.

If k 2 A \ B we must have 1
2k!

= 1
2n!+m! or 1

2k!
= 2

2n!+m! . Hence n! +m! = k!
or n! +m! � 1 = (k!). We note that n! +m! can never be a factorial, nor can
n!+m!�1 be a factorial since �1 is not divisible by 2! Thus A\B is empty. This
contradicts the equation

X
n2A;m2B

1
2n!+m! =

X
k2A\B

1
2k!
and the proof is complete.

Problem 238

Let (X; d) be a metric space without isolated points. If every continuous
function from X into R is uniformly continuous prove that X is compact.

Suppose X is not compact. Let fxng be a sequence with no convergent
subsequence. There exists a sequence fyng such that 0 < d(xn; yn) <

1
n . The
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set fxn : n � 1g [ fyn : n � 1g has no limit points. De�ne f(xn) = n; f(yn) =
2n; n = 1; 2; :::. Extend f to a continuous function on X. The extended function
is obviuosly not uniformly continuous.

Problem 239 [ Probabilistic construction of a strictly increasing continuous
singular function]

Let fXng be i.i.d. random variables with PfXn = 0g = p = 1�PfXn = 1g

where 0 < p < 1; p 6= 1
2 . Let X =

1X
n=1

Xn

2n and F (x) = PfX � xg. We claim that

F is continuous and strictly increasing on [0; 1] with F 0 = 0 a.e. If an 2 f0; 1g
for each n then PfXn = an8ng = 0. Thus PfX = xg = 0 for each x. [ Indeed,

X = x =
1X
n=1

an
2n forces fXng to take at most two values in f0; 1gN). Thus F is

continuous. Now Pf j
2n < X < j+1

2n g = PfXk = ak; 1 � k � ng where a0ks are

determined by j
2n =

nX
k=1

ak
2k
. Hence, F is strictly increasing. Since monotonic

functions are di¤erentiable a.e. it su¢ ces to show that if 0 < x < 1 and F
is di¤erentiable at x then F 0(x) = 0. For each n there exists jn such that
jn
2n < x � jn+1

2n . Let In = (
jn
2n ;

jn+1
2n ]. Then PfX2Ing

2�n =
F ( jn+12n )�F ( jn2n )

2�n ! F 0(x).

If F 0(x) 6= 0 this gives PfX2In+1g
PfX2Ing ! 1

2 . It is easy to see that PfX 2 Ing is of
the type pa1pa2 :::pan where p1 = p and p0 = 1� p. Thus PfX2In+1gPfX2Ing 2 f0; 1g for
each n and hence it cannot converge to 1

2 :

Problem 240

Give a proof of DCT (Dominated Convergence Theorem) without using
Monotone Convergence Theorem or Fatou�s Lemma.

Let (
;F ; �) be a measure space, ffng a sequence of meaurable functions
converging a.e. to a measurable function f such that jfnj � g a.e. and let
g be integrable. Let An = fx : jfk(x)� f(x)j � �g(x) for some k � ng
where � > 0. Then An \ fx : g(x) > 0g # A where A has measure 0:

Now
Z
jfn � f j d� =

Z
An

jfn � f j d� +
Z
Ac
n

jfn � f j d� and
Z
Ac
n

jfn � f j d� �

�

Z
gd�: Also

Z
An

jfn � f j d� �
Z

An\fx:g(x)>0g

2gd�. It reamins only to show that

Z
Bn

gd� ! 0 if Bn # B and �(B) = 0. This is obviously true for a simple in-

tegrable function g and the general case follows from the fact that there is an

integrable simple function h with
Z
jg � hj d� as small as we need.
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Problem 241

Let fang � Rk; kank ! 1 and inffkan � amk : n 6= mg > 0. Show that
1X
n=1

1
kankk+�

<1 for every � > 0 but
1X
n=1

1
kankk

may be 1:

Let KN = fx 2 Rk : jxij � N for each ig. Claim: if A � KNnKN+1 and
ka� bk � r for any two distinct points of A then the cardinality of A does not
exceed c[ 2(2N+r)r ]k � c[ 2(2N�2�r)r ]k where 1

c is the Lebesgue measure of the ball
with center 0 and radius 1. For this let x(1); x(2); :::; x(m) 2 A and note that
B(x(j); r2 ); 1 � j � m are disjoint and they are all contained in fx : jxij � N+ r

2
for each i and jxij > N � 1 � r

2 for some ig. Taking Lebesgue measure we see

that m � c (2N+r)
k�(2N�2�r)k
( r2 )

k . Now
1X
n=1

1
kankk+�

=
1X
N=1

X
an2KNnKN+1

1
kankk+�

�

1X
N=1

c (2N+r)
k�(2N�2�r)k
( r2 )

k
1

Nk+� <1 because (2N + r)k � (2N � 2� r)k < (2r +

2)ktk�1 � (2r + 2)k(2N + r)k�1 for some t between 2N � 2 � r and 2N + r.
We now give an eaxmple to show that we cannot take � = 0: Let SN be the
set formed by the points (�N + rj1;�N + rj2; :::;�N + rjk) where j0is are
positive integers not eaxceeding 2N

r . The cardinality of SNnSN=1 is at least
equal to ( 2Nr )

k � ( 2N�2r )k. Arranging
[
N

(SNnSN=1) in a sequence fang we see

that
1X
n=1

1
kankk

�
1X
N=1

1
(N�1)k f(

2N
r )

k � ( 2N�2r )kg � �
X

1
N for some positive

constant �:

Problem 242

Let A be a connected subspace of a connected space X. If C is a connected
component of Ac show that Cc is connected.

We �rst show that if S is a clopen subset of Ac then A [ S is connected.
Suppose A [ S = U [ V with U and V open disjoint and non-empty in A [ S.
Then A � U or A � V . Suppose, for de�niteness, A � V . Then U is a clopen
subset of S. [ U � A [ S and U � V c � Ac]. Hence it is a clopen subset
of Ac. U is also a clopen subset of A [ S and hence it is a clopen subset of
Ac [ (A [ S) = X. [ Indeed V � A [ S and V c � Ac]. But X is connected
and we have arrived at a contradiction. This proves that A [ S is connected.
Now suppose Cc = E [ F where E and F are non-empty disjoint open sets in
Cc. Since C � Ac we have A � Cc. Thus A is a connected subset of E [ F .
It follows that A � E or A � F . For de�niteness, let A � E. Now C [ F is
connected by the result just proved ( with C in place of A and F in place of S).
This connected set is contained in Ac ( because F � Ec � Ac) and it contains
C strictly, contradicting the fact that C is a component of Ac.
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Problem 243

Consider the set A = f
1X
n=0

anx
n :

1X
n=0

janj < 1g as a subset of C[0; 1]. Is

this set of �rst category?

De�ne T : l1 ! C[0; 1] by Tfang =
1X
n=0

anx
n. T is a continuous linear map

with a dense range by Weierstrass Approximation Theorem. Also, T is injective
(by basic facts on power series). If the range of T is of second category then the
proof of open mapping theorem shows that it is an open map. This would imply
that the range is complete, hence closed. But then T would be surjective but
not every continuous real function on [0; 1] has a power series expansion. In factp
x is not di¤erentiable and hence it does not have a power series expansion.

Problem 244

Does there exist a function f : R ! R such that lim
y!x

jf(y)j = 1 for every

rational number x?

No! Since R =

1[
n=1

fx : jf(x)j < ng there exists N and a < b such that

(a; b) is contained in the closure of fx : jf(x)j < Ng. If y 2 (a; b) then there
exists a sequence fyjg converging to y such that jf(yj)j < N for each j. [ If
no such sequence exists then there exists � > 0 such that jf(z)j � N for all
z 2 (y � �; y + �)nfyg. But then no point of (y � �; y + �)nfyg can belong to in
the closure of fx : jf(x)j < Ng which is a contradiction]. But if we take y to be
a rational number in (a; b) we get a contradiction to the hypothesis.

Remarks: the result holds with R replaced by a complete metric space and
Q replaced by a dense subset. In particular there is no function f : R! R such
that lim

y!x
jf(y)j = 1 for every irrational number x. We can also prove this by

considering
��f(p2x)��+ �� 1x �� IRnf0g

Problem 245

Let M be a closed linear space contained in C[0; 1]\C 0[0; 1] ( where C 0[0; 1]
is the set of all continuously di¤erentiable real functions on [0; 1]). Show that
M if �nite dimensional.

De�ne T :M ! C[0; 1] bny T (f) = f 0: T is well de�ned and linear. We now
show that T has closed graph: let fn ! f and f 0n ! g in C[0; 1]. Then f is

di¤erentiable and f 0 = g as seen from the relation fn(t) = fn(0) +

tZ
0

f 0n(s)ds.
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By Closed Graph Theorem T is continuous. Hence jf 0(x)j � kTk kfk for all
f 2 M . By Arzela Ascoli Theorem it follows that the closed unit ball of M is
compact. Hence M is �nite dimensional.

Problem 246

Let xn ! x weakly in a Hilbert spaceH. What can we say about lim inf kxn � xk
and lim sup kxn � xk other then the fact that lim inf � lim sup?

Nothing! We prove that given 0 � a � b <1 we can �nd an example where
lim inf kxn � xk = a and lim sup kxn � xk = b. Let xn = anen in H = l2 where
fang is a bounded sequence. Then xn ! 0 weakly. Also lim inf kxn � 0k =
lim inf an and lim sup kxn � 0k = lim sup an.

Problem 247

Let fCng be a decreasing sequence of closed convex non-empty bounded sets

in a Hilbert space H. show that
1\
n=1

An is non-empty.

Proof: there exists xn 2 Cn such that kxnk = inffkxk : x 2 Cng. Note
that inffkxk : x 2 Cng � inffkxk : x 2 Cn+1g. Hence fkxnkg is an increasing
sequence of real numbers.. It is also bounded because xn 2 Cn � C1. Now
kxn+m � xnk2 = 2 kxn+mk2 + 2 kxnk2 � kxn+m + xnk2and xn+m+xn

2 2 Cn; so
kxn+m + xnk � 2 kxnk. So kxn+m � xnk2 � 2 kxn+mk2 + 2 kxnk2 � 4 kxnk2 =
2(kxn+mk2 � kxnk2)! 0. Let xn ! x. Since fxn; xn+1; :::g is contained in Cn
it follows that x 2 Cn for each n.

Problem 248
If P and Q are projections on a Hilbert space show that kP �Qk � 1 and

kP +Qk � 1 if PQ = QP and P 6= Q:

Second part is trivial since kP �Qk =
P 2 �Q2 � kP �Qk kP +Qk : To

prove that �rst part let R = I � P and S = I � Q. Then P = PQ + PS and
Q = PQ+ RQ so P �Q = fPQ+ PSg � fPQ+ RQg = PS � RQ: Since the
ranges of P and R are orthogonal we get kPx�Qxk2 = kPSxk2 + kRQxk2 �
kSxk2 + kQxk2 = kxk2.

Problem 249 [ Non-metrizability of pointwise convergence topology]

Let � be the metric on X = C[0; 1] de�ned by �(f; g) =
Z

jf�gj
1+jf�gj and

� be the topology on X with ff : jf(xi)� f0(xi)j < �i; 1 � i � ng where
n 2 N; �0is > 0 and x0is 2 [0; 1] as basic neighbourhoods of f0 for each f0 2 X.
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Consider the identity map I from (X; �) to (X; �). Show that this map is
sequentially continuous but not continuous and that � is not metrizable.

Since pointwise convergence of a sequence of continuous functions implies
convergence in measure it follows that I is sequentially continuous. If it is
continuous then there exist n 2 N; �0is > 0 and x0is 2 [0; 1] such that ff :

jf(xi)� f0(xi)j < �i; 1 � i � ng � ff :
Z

jf j
1+jf j <

1
2g. In particular

Z
jf j
1+jf j <

1
2

whenever f is of the type c(x� x1)(x� x2):::(x� xn). We get a contradiction
by letting c!1.

Problem 250

Show that a homeomorphism from Q onto itself need not be monotonic and
its inverse need not be continuous.

Let a; b 2 Qc with a < b; a+ b 2 Q and f(x) =
�

x if x � a or x � b
a+ b� x if a < x < b

. [

We may take a =
p
2; b = 1� a].

Problem 251

Give an example of a strong metric (other than the discrete metric), i.e. a
metric d on a set X such that d(x; y) � maxfd(x; z); d(z; y)g for all x; y; z. Show
that for any strong metric open balls are closed and, given any two open balls
either one is contained in the other or the two balls are disjoint.

Let p be a �xed prime. For any positive integer n let �(n) be the largest
positive integer k such that pk divides n: Clearly, �(nm) = �(n) + �(m). Let
�(� n

m ) = �(n)� �(m). It is trivial to check that this is well de�ned on the set
of all non-zero rational numbers and that �(xy) = �(x)+�(y) for x; y 2 Qnf0g.
De�ne d(x; y) = p��(x�y) if x and y are distinct rational numbers and 0 if
x = y 2 Q. Claim: d is a strong metric. For this we have to show that
�(x� y) � minf�(x� z); �(z � y)g. Equivalently we have to show �(x� y) �
minf�(x); �(y)g if x; y 2 Qnf0g and x 6= y. W.l.o.g. let �(x) � �(y): In this
case we have to show �(x � y) � �(y) which is equivalent to �(xy � 1) � 0.
Here z = x

y is in Qnf0; 1g and �(z) � 0. Write z as
n
m (n;m 2 N; n 6= m) .Since

p�(m) divides both n and m (because �(m) � �(n)) we see that p�(m) divides
n�m too and so �(n�m) � �(m) as required. Thus d is a string metric.
Now let d be strong metric on a set X. We claim that d(x; y) 6= d(y; z) )

d(x; z) = maxfd(x; y); d(y; z)g. Suppose �rst that d(x; y) < d(y; z): We have
to show that d(x; z) � d(y; z). [ The reverse inequality follows from triangle
inequality]. But d(y; z) � maxfd(y; x); d(x; z)g = d(x; z) [because if this last
maximum is d(y; x) then we would have d(y; z) � maxfd(y; x); d(x; z)g = d(x; y)
a contradiction]. Now consider the case d(y; z) < d(x; y). To show d(x; z) �
maxfd(x; y); d(y; z)g � d(x; y). But d(x; y) � maxfd(y; z); d(x; z)g = d(x; z)
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[because if the maximum here is d(y; z) then we would have d(x; y) � d(y; z), a
contradiction]. This proves the claim in all cases.
Let U = B(x; r). If y 2 U c and d(z; y) < r we claim that z 2 U c ( proving

that U c is open and hence U is closed). If z 2 U then d(z; x) < r. Now d(y; x) �
maxfd(y; z); d(x; z)g < r, a contradictionsince y 2 U c. Thus, every open ball in
X is closed. Suppose now that z 2 B(x; r) \B(y; s). Since z 2 B(x; r) we have
B(z; r) � B(x; r) : d(u; z) < r ) d(u; x) � maxfd(u; z); d(x; z)g < r. We can
interchange x and z to conclude that B(x; r) � B(z; r). Thus, B(z; r) = B(x; r)
Similarly we get B(z; s) = B(y; s). Thus B(x; r) � B(y; s) or B(y; s) � B(x; r)
according as r � s or s � r.

Problem 252

Prove or disprove the following:

for any subsequence fnkg of f1; 2; :::g the sequence f 1N
NX
j=1

einjxg converges

to 0 a.e. w.r.t Lebesgue measure on R.

True. Let fN (x) = 1
N

NX
j=1

einjx. Then 1
2�

1X
j=1

2�Z
0

��fj2(x)��2 dx = 1X
j=1

1
j2 < 1;

so
1X
j=1

��fj2(x)��2 < 1 a.e. ( on [0; 2�] hence on R). In particular fj2 ! 0

a.e.. Now, for N2 < k � (N + 1)2 we have fk(x) � fN2(x) = 1
k

kX
j=1

einjx �

1
N2

N2X
j=1

einjx = (
N2X
j=1

einjx)( 1k �
1
N2 ) +

1
k

kX
j=N2+1

einjx: Since
1X
j=1

( 1k �
1
N2 ) �

1X
j=1

( 1
N2 � 1

(N+1)2 ) <1 and k�N2

k � (N+1)2�N2

N2 ! 0 we are done.

Problem 253

Let f 2 L1([a; b]). Show that f is Riemann integrable in the following
modi�ed sense:
given � > 0 there is a function � : [a; b]! (0;1) such that for any partition

fxig of [a; b] and any choice if points �i in [xi�1; xi] satisfying the condition

xi � xi�1 < �(�i) we have

������
NX
j=1

f(�i)[xi � xi�1]�
Z
fdm

������ < �. [m denotes

Lebesgue measure].
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There exists � > 0 such thatm(A) < � )
Z
A

jf j dm < �=3. Let r = �
3(�+b�a) .

Let Ej = f�1((j� 1)r; jr]) for each j 2 Z. Choose open sets Uj such that Ej �
Uj andm(UjnEj) < �

3(2jjj)(1+jjj) . Any point x in [a; b] belongs to Ej for a unique
j and we de�ne Ux = Ui. We de�ne �(x) as d(x; U cx). Consider any partition
fxig of [a; b] and any choice if points �i in [xi�1; xi] satisfying the condition
xi�xi�1 < �(�i). Note that [xi�1; xi] � U�i = Uji where ji is such that �i 2 Eji .
[ If y 2 [xi�1; xi] then jy � �ij � xi � xi�1 < �(�i) = d(�i; U

c
ji
) which implies

y 2 Uji ]. Now

������
NX
j=1

f(�i)[xi � xi�1]�
Z
fdm

������ �
NX
j=1

Z
[xi�1;xi]

jf(�i)� f(x)j dx �

S1 + S2 + S3 where S1 =
NX
j=1

Z
[xi�1;xi]\Eji

jf(�i)� f(x)j dx;

S2 =

NX
j=1

Z
[xi�1;xi]nEji

jf(�i)j dx and S3 =

NX
j=1

Z
[xi�1;xi]nEji

jf(x)j dx. Since

jf(�i)� f(x)j � r for all x 2 [xi�1; xi] \ Eji (because x and �i both belong to

Eji) we get jS1j � r[b�a] < �
3 . Next we note that jS2j =

1X
m=�1

X
fi:ji=mg

Z
[xi�1;xi]nEm

jf(�i)j dx

� (jmj + 1)r
1X

m=�1
m(UmnEm) < (jmj + 1)r

1X
m=�1

�
3(2jmj)(1+jmj) ( since

the sets [xi�1; xi]nEm as i varies over all indices with ji = m are disjoint and
they are all contained in UmnEm) so jS2j � r� < �

3 . [ we have used the el-
ementary fact that (j � 1)r < t � jr implies jtj � (1 + jjj)r]. Finally we

look at S3. Let A =
N[
i=1

([xi�1; xi]nEji). Then m(A) �
NX
j=1

m([xi�1; xi]nEji) =

1X
m=�1

X
fi:ji=mg

m([xi�1; xi]nEji) =
1X

m=�1
m(UmnEm) (since the sets [xi�1; xi]nEm

as i varies over all indices with ji = m are disjoint and they are all contained in

UmnEm) and so m(A) < �. It follows from the de�nition of � that
Z
A

jf j < �=3.

It follows that jS3j < �=3 and hence that

������
NX
j=1

f(�i)[xi � xi�1]�
Z
fdm

������ < �.

Remark: if � is a constant function then f is Riemann integrable (and hence
continuous a.e.).

Problem 254
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Is (R2; kk1) isometrically isomorphic to (R2; kk1)?

Yes. The map (x; y)! (x+y2 ; x�y2 ) is an isometric isomorphism of (R2; kk1)
onto (R2; kk1) because jxj �

��x+y
2

�� + ��x�y2 �� ; jyj � ��x+y
2

�� + ��x�y2 �� and ��x+y2 �� +��x�y
2

�� 2 fx;�x; y;�yg:
Problem 255

Let f : [a; b] ! R be continuous. Prove that there is a function g : [0; b �
a] ! R such that g is continuous, monotonically increasing, g(0) = 0 and
jf(x)� f(y)j � g(jx� yj) for all x; y 2 [a; b]:

Let g(t) = supfjf(x)� f(y)j : x; y 2 [a; b] and jx� yj � tg for 0 < t �
b � a and g(0) = 0. It is trivial to see that jf(x)� f(y)j � g(jx� yj) for all
x; y 2 [a; b] and that g is monotonically increasing and continous at 0. Now
let 0 < t < b � a. Suppose ftng # t. Let � > 0 and choose � > 0 such
that jf(x)� f(y)j < � whenever jx� yj < �: Let jx� yj � tn. We can �nd
z such that jx� zj � t and jz � yj � tn � t. [ z = x + t

tn
(y � x) will do].

Hence jf(x)� f(y)j � jf(x)� f(z)j + jf(z)� f(y)j < g(t) + � if n is so large
that tn � t < �. Taking supremum over all pairs (x; y) such that jx� yj � tn
we get g(t) � g(tn) < g(t) + � if n is su¢ ciently large. This proves that g
is right continuous. Now let tn " t. Let jx� yj � t. We can �nd z such
that jx� zj � tn and jz � yj � t � tn. [ z = x + tn

t (y � x) will do] Hence
jf(x)� f(y)j � jf(x)� f(z)j + jf(z)� f(y)j < g(t) + � if n is so large that
t � tn < �. Taking supremum over all pairs (x; y) such that jx� yj � t we
get g(tn) � g(t) < g(tn) + � if n is su¢ ciently large. This proves that g is left
continuous.

Problem 256

Let A be a subset of a metric space X and f : A! R be continuous. Show
that there exists a G� set B and a continuous function F : B ! R such that
A � B and F (x) = f(x) for all x 2 A:

Let B =
1\
k=1

1[
m=1

fx 2
�
A : jf(y)� f(z)j < 1

k whenever y; z 2 A; d(x; y) �
1
m

and d(x; z) � 1
mg. Suppose jf(y)� f(z)j <

1
k whenever y; z 2 A; d(x; y) � 1

m
and d(x; z) � 1

m . If d(x; u) �
1
2m then, for y; z 2 A with d(u; y) � 1

2m and
d(u; z) � 1

2m we have d(x; y) � 1
m and d(x; z) � 1

m and hence jf(y)� f(z)j < 1
k .

This proves that
1[
m=1

fx 2
�
A : jf(y)� f(z)j < 1

k whenever y; z 2 A; d(x; y) �
1
m

and d(x; z) � 1
mg is open in

�
A for each k. Hence B is a G� set. By continuity of

f on A it follows that A � B. If x 2 B and fxng is a sequence in A converging
to x the sequence ff(xn)g is Cauchy in R: Let F (x) be the limit of this sequence.
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It is clear that this number does not depend on the particular sequence fxng
and that F is a continuous extension of f .

Problem 257

Any union of non-degenerate intervals is a countable union of intervals, hence
a Borel set.

Let E =
[
�2A

I� where fI�g�2A is a collection of intervals of positive length.

If x 2 E let Jx be the union of all the intervals I� which contain x. Then Jx
is convex, hence an interval. [ Consider ty + (1 � t)z where 0 < t < 1; y 2 I�1
and z 2 I2. I�1 [ I�2 is connected because x 2 I�1 \ I�2 . Hence I�1 [ I�2 is an
interval and so it contains ty + (1� t)z]. It is clear that Jx1 and Jx2 are either
equal or disjoint for any two points x1; x2 in E. Pick a rational from each of
these intervals to get an injective map from fJx : x 2 Eg into Q. It follows that
E =

[
x2E

Jx is a countable union on intervals.

Problem 258

Find all compact subgroups of S1 (under multiplication):

Let G be a compact subgroup of S1: Let H = fx 2 R : eix 2 Gg. Then H
is a subgroup of (R;+). Hence it is either dense or discrete. If it is dense then
G = S1 : for any real number x there is a sequence fxng in H converging to x
and eix = lim eixn 2 G since G is closed. In the remaining case there exists a
positive number a such that H = fna : n 2 Zg: We consider two cases: a

2� 2 Q
and a

2� 2 Q
c: In the �rst case let a

2� =
p
q where p and q are positive integers

with no common factors. We have G = fei2�np=q : n 2 Zg = fei2�np=q : n 2
f0; 1; :::; q � 1g. Thus, G is the group of q � th roots of unity in this case. If
a
2� 2 Q

c we claim that G = S1 : the set fn + m a
2� : n;m 2 Zg is dense in

R. Given x 2 R let nj + mj
a
2� !

x
2� . Then e

iamj = e2�nj+iamj ! eix and
eiamj 2 G for each j proving that the closed set G is also dense in S1.

Problem 259

Using Uniform Boundedness Principle show that there exists a continuous
periodic function whose Fourier series at 0 does not converge.
[ 0 can be replaced by any other point. We prove below the existence of a

continuous periodic function whose the partial sums of whose Fourier series at
0 form an unbounded sequence].

Let X denote the Banach space of all continuous complex functions f on
[��; �] satisfying f(��)�f(�) with the supremum norm and let SN (f; x) denote
the N � th partial sum of the Fourier series of f at x. De�ne TN : X ! C by
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TNf = SN (f; 0). If the Fourier series of every f 2 X at 0 converges then, by
Uniform Boundedness Principle, sup

N
kTNk < 1. We show that this is false.

Let � > 0; N 2 N and �N be a positive number such that
Z
E

jDN (x)j dx < � if

m(E) < �N . The function DN (x) =
sin(N+ 1

2 )x

sin( 12x)
has only a �nite number of zeros

on [��; �]. Let U be the union of small intervals around these points so that
(the intervals are disjoint and) m(U) < �N . Let f be a real valued continuous
function on [��; �] which is equal to jDN (x)j

DN (x)
on U c and linear in each of the

intervals that make up U . By the standard expression for SN (f; 0) in terms

of DN we have TNf = 1
2�

�Z
��

fDN . Hence, TNf = 1
2�

Z
Uc

jDN j + 1
2�

Z
U

fDN =

1
2�

�Z
��

jDN j � 1
2�

Z
U

jDN j+ 1
2�

Z
U

fDN . Noting that

������ 12�
Z
U

fDN

������ � 1
2�

Z
U

jDN j < �.

Thus TNf > 1
2�

�Z
��

jDN j � 2�. It is well known that f 1
2�

�Z
��

jDN jg is unbounded;

in fact 1
2�

�Z
��

jDN j � 4
�2 logN is bounded. Hence the proof is complete. [ See p.

154 of Fourier Series by Edwards for an explicit construction].

Problem 260

Let A be aG� subset of R:Give a simple construction of a fucntion f : R! R
which is continuous precisely at points of A:

See Problem 226 above for another construction.

Let A =
1\
n=1

Gn with Gn open and Gn+1 � Gn for all n. Let fn =

ICnnEn where Cn = Gcn and En = Q \ C0n. Let f =

1X
n=1

1
n!fn. We claim

that f has the desired properties. First let x 2 A. Then fn(x) = 0 for all
n. In fact, for each n, fn vanishes in a neighbourhood of x. Hence each fn
is continuous at x. By uniform convergence of the series de�ning f we see
that f is also continuous at x. Now let x 2 Ac: Let k be the least positive
integer such that x 2 Ck. If x 2 C0k then, in su¢ ciently small neighbour-
hoods of x; fk take both the values 0 and 1 and so its oscillation at x is 1.
We claim that the oscillation of fj at x is 0 for each j < k : since x =2 Cj
it follows that points close to x are all in Ccj and hence fj vanishes at those
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points. Now !(f; x) � 1
k!!(fk; x)�

1X
j=k+1

1
j! since !(fj ; :) � 1 everywhere. Thus

!(f; x) � 1
k! �

1X
j=k+1

1
j! �

1
k! [1�

1X
j=k+1

1
(k+1)(k+2):::(j) ] >

1
k! [1�

1X
j=k+1

1
2j�k

] = 0:

Problem 261

If f 2 L1(R) and 2f(t) = 3f(3t) + 3f(3t� 1) a.e. show that f = 0 a.e.

Probability theory makes this quite simple. Let fXng be i.i.d. random

variable taking values 0 and 2 each with probability 12 and X =
1X
n=1

Xn

3n . Then

X takes values in the cantor set. Let � be a probability measure induced by X.
Then �(C) = 1 and hence � ? m where m is the Lebesgue measure. Note thatZ
eitxd�(x) = EeitX =

1Y
n=1

Eeit
Xn
3n =

1Y
n=1

1+ei2t=3
n

2 . From this we conclude that

there is no L1 function whose Fourier transform is
1Y
n=1

1+ei2t=3
n

2 . However, the

given equation yields 2
^

f(t) =
^

f(t=3) + eit=3
^

f(t=3) where
^

f(t) =

Z
eitxf(x)dx:

Thus
^

f(t) =
^

f(t=3)( 1+e
it=3

2 ). Iteration gives
^

f(t) =
^

f(t=3k)( 1+e
it=3

2 )( 1+e
it=32

2 ):::( 1+e
it=3k

2 ).

Letting k !1 we get
^

f(t) = f
1Y
n=1

1+ei2t=3
n

2 g
^

f(0). This would lead to the con-

tradiction that
1Y
n=1

1+ei2t=3
n

2 is the Fourier transform of an L1 function unless

^

f(0) which implies
^

f(t) = 0 for all t and hence f = 0 a.e.

Problem 262

Let f : (0; 1) ! (0;1) be any function with lim
x!0+

f(x) = 1. Show that

there is a non-negative convex function g on (0; 1) such that lim
x!0+

g(x) =1 and

g(x) � f(x) for all x 2 (0; 1).

Choose a sequence of positive numbers f�ng such that �n+1 < �n
2 ; infff(x) :

�n+1 � x < �ng > n and �n ! 0. Let an = �[ 1�1+
1
�2
+:::+ 1

�n
]; n = 1; 2; :::. Let

g(x) = anx+n for �n+1 � x < �n. We have g(x) � an�n+n for �n+1 � x < �n
and an�n + n = n � �n[

1
�1
+ 1

�2
+ ::: + 1

�n
] > n � [1 + 1

2 + ::: + 1
2n�1 ] which

is positive for n > 1 and ! 1 as n ! 1 so lim
x!0+

g(x) = 1 and g is positive

on (0; t) where t = �2 and g(x) � n < infff(x) : �n+1 � x < �ng � f(x) for
�n+1 � x < �n proving that g � f . On the open interval (�n+1; �n) we have
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g0(x) = an. Since fang is decreasing we can conclude that g is convex if we can
show that g is continuous at the points �n; n = 1; 2; :::. The right hand limit
of g at �n is an�1�n + n � 1 and the left hand limit is an�n + n. However
an�n+n = �n[an� an�1] +�nan�1+n = �1+�nan�1+n = an�1�n+n� 1.
We have proved that there exists a positive convex function g on (0; t) such that
lim
x!0+

g(x) = 1 and g(x) � f(x) for all x 2 (0; t). It is clear from this proof

that if f is bounded below by a positive constant � then (by applying above
argument to 2

� f) we can construct a positive convex function g on (0; 1) which
is bounded above by f such that lim

x!0+
g(x) =1. For the general case let gn be

a positive convex function on (0; 1) which is bounded above by maxff; 1ng and
satis�es the condition lim

x!0+
g(x) =1. Then lim sup gn is non-negative, convex,

bounded above by f and lim sup gn(x) tends to 1 as x! 0.

Remark: the result becomes false if (0; 1) is replaced by (1;1) and the
condition lim

x!0+
g(x) =1 by lim

x!1
g(x) =1. In fact if g is convex on (1;1) and

lim
x!1

g(x) =1 then g(x)�g(x1)
x�x1 � g(x2)�g(x1)

x2�x1 for x1 < x2 < x and we can choose

x1; x2 such that
g(x2)�g(x1)
x2�x1 > 0 so g(x) � ax + b for some a; b 2 R with a > 0

for x su¢ ciently large. In particular there is no convex function g on (1;1)
such that lim

x!1
g(x) =1 and g(x) � log(1 + x) for all x.

Problem 263

Find f
Z
FdF : F is a probability distribution on Rg:

The integration by parts formula gives
Z
FdF = 1 �

Z
F (x�)dF (x). [

This is obtained by evaluating (F � F )f(x; y) : x � yg in two ways, using
Fubini�s Theorem]. Thus

Z
FdF � 1 �

Z
F (x)dF (x) and

Z
FdF � 1

2 . Note

that
Z
FdF = 1

2 whenever F is continuous. If dF is the degenerate measure

at 0 we get
Z
FdF = 1. The map F !

Z
FdF from the space of all com-

plex Borel measures on R into R is continuous. In fact
����Z FdF �

Z
GdG

���� �����Z FdF �
Z
GdF

����+ ����Z GdF �
Z
GdG

���� � 2 kF �Gk where kF �Gk is the to-
tal variation norm of F �G. The space of probability measures is convex, hence
connected. Thus f

Z
FdF : F is a probability distribution on Rg is connected,

hence an interval. This proves that the answer is [ 12 ; 1]. An elementary argu-

ment to show that any number in [ 12 ; 1] is of the form
Z
FdF is as follows: let
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F (x) = 0 for x < 0; 1� [1�
p
2t� 1]e�x for x � 0 where t 2 [ 12 ; 1] is arbitrary.

Then
Z
FdF = 2t� 1 +

1Z
0

f1� [1�
p
2t� 1]e�xg[1�

p
2t� 1]e�xdx = t:

Problem 264

Let f : (1;1) ! (1;1) be twice di¤erentiable with xf 00(x) bounded and
lim
x!1

f(x)
x = a. Show that lim

x!1
f 0(x) = a:

This is a continuous analog of Hardy�s Tauberian Theorem. We write f 0(x)�

f(x)
x as y

f(y)
y � f(x)

x

y�x � 1
y�x

yZ
x

(y�t)f 00(t)dt where y > x. [ This can be proved easily

by computing the integral by an integration by parts]. Let � > 0. Choose �

such that
��� f(x)x � a

��� < � if x > �: Then

����y f(y)
y � f(x)

x

y�x

���� < 2� y
y�x = 2�

y=x
y=x�1 . Now������ 1

y�x

yZ
x

(y � t)f 00(t)dt

������ � C 1
y�x

yZ
x

y�t
t dt where C = supfjxf 00(x)j : 1 < x < 1g.

Note that 1
y�x

yZ
x

y�t
t dt = 1

y�x [y log
y
x�(y�x)] =

y=x
y=x�1 log

y
x�1 �

y=x
y=x�1 [

y
x�1]�

1 = y
x�1 �

p
� if 1 < y

x � 1+
p
�. Thus

���f 0(x)� f(x)
x

��� < 2� y=x
y=x�1+

p
� whenever

� < x and x < y � x(1 +
p
�). Suppose y

x = 1 +
p
�. Then x < y � x(1 +

p
�)

and
���f 0(x)� f(x)

x

��� < 2� y=x
y=x�1 +

p
� = 2� 1+

p
�p
�
+
p
� =

p
�[2(1 +

p
�) + 1].

Problem 265

Prove Uniform Boundedness Principle (i.e. Banach Steinhaus Theorem)
without using Baire Category Theorem

Let X and Y be Banach spaces and fTi : i 2 Ig be a family of bounded
operators from X into Y such that supfkTixk : i 2 Ig < 1 for each x 2 X.
Suppose, if possible, supfkTik : i 2 Ig = 1. Let kTi1k > 24 and u1 2 X
be such that ku1k = 1 and kTi1(u1)k > 2

3 kTi1k. Let x1 = 1
4u1. Then

kx1k = 1
4 and kTi1(x1)k >

1
6 kTi1k =

2
3 kTi1k kx1k. Note that kTi1(x1)k > 2:

Suppose we have chosen fi1; i2; :::; iNg � I and fx1; x2; :::; xNg � X such that
kxjk = 1

4j ,
Tij (xj) > 2

3

Tij kxjk and Tij (xj) > 2fj + Mj�1g where
Mj = supfkTi(x1 + x2 + :::+ xj)k : i 2 Ig for 1 � j � N (M0 = 0). We
choose iN+1 such that

TiN+1

 > (3)(4N+1)(MN +N + 1) and uN+1 such thatTiN+1
(uN+1)

 > 2
3

TiN+1

 and kuN+1k = 1. Let xN+1 = 1
4N+1uN+1. Then

kxN+1k = 1
4N+1 ,

TiN+1
(xN+1)

 > 2
3

TiN+1

 kxN+1k and TiN+1
(xN+1)

 >
2fN + 1 + MNg. This completes the construction of fing and fxng. Let
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x =
1X
j=1

xj . Then

TiN
1X

j=N+1

xj

 � kTiN k
1X

j=N+1

1
4j =

1
3 kTiN k kxNk. Thus

kTiN (x)k � kTiN (xN )k �

TiN
1X

j=N+1

xj

�
TiN

N�1X
j=1

xj


� kTiN (xN )k� 1

3 kTiN k kxNk�MN�1 � kTiN (xN )k� 1
2 kTiNxNk�MN�1 =

1
2 kTiNxNk �MN�1 � n. This is a contradiction.

Problem 266

Give an example of a sequence of continuous functions ffng on [0; 1] such

that supf

������
bZ
a

fn(x)dx

������ : n � 1:[a; b] � [0; 1]g < 1 but supf
Z
jfn(x)j dx : n �

1g =1.

We can replace [0; 1] by [��; �]. We take fn = Dn, the n � th Dirichlet

kernel. It is well known that
Z
jfn(x)j dx!1

. Now

������
bZ
a

fn(x)dx

������ =
������
bZ
a

nX
j=�n

eijxdx

������ =
��������

nX
j=�n
j 6=0

eijb�eija
ij + b� a

�������� =
������
nX
j=1

f eijb�eijaij + e�ijb�e�ija
�ij g+ b� a

������ =������
nX
j=1

2i sin(jb)�2i sin(ja)
ij + b� a

������. From the standard fact ( found in most books

on Fourier series)
nX
j=1

sin(jx)
j is uniformly bounded.

Problem 267

Let f be a non-negative trigonometric polynomial. Show that thre is a
trigonometric polynomial g such that f = jgj2 :

Assume �rst that f(x) > 0 for all x. Let p(z) = zN
NX

j=�N
cjz

j where

f(x) =
NX

j=�N
cje

ijx: Then g is an entire function. Note that z2N [p( 1�
z
)]� =

z2N 1
zN

NX
j=�N

�
cj

1
zj =

NX
j=�N

�
cjz

N�j =

NX
j=�N

�
c�jz

N+j =

NX
j=�N

cjz
N+j = p(z).

[ Since f is real valued we have
NX

j=�N
cje

ijx =
NX

j=�N

�
cje

�ijx =
NX

j=�N

�
c�je

ijx
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which implies
�
c�j = cj for all j]. Thus, p(z) = 0; z 6= 0 ) p( 1�

z
) = 0. It follows

that p(z) = c
Y
j

(z�aj)(z� 1
�
aj
) for some none-zero complex numbers faig with

c 6= 0 if we assume, as we may, that cN 6= 0. [ The case c�N 6= 0] is similar].
Now e�iNxp(eix) = f(x) and hence f(x) = e�iNxc

Y
j

(eix � aj)(e
ix � 1

�
aj
) =

deikx
Y
j

(aj � eix)(
�
aj � e�ix) = deikx

Y
j

��(eix � aj)��2 and k is necessarily 0 be-
cause f is non-negative. It follows that f = jgj2 where g =

p
d
Y
j

(eix � aj).

Now suppose f is allowed to vanish at some points. Then for each n � 1 there
is a trigonometric polynomial gn such that f =

��g2n��. The degree of gn is at
most N=2, so we may write gn =

NX
j=�N

cj;ne
ijx. Since

NX
j=�N

��c2j;n�� = kgnk22 =

1
2�

�Z
��

[f(x)+ 1
n ]dx we see that the sequence f(c�N;n; c�N+1;n; :::; c0;n; ::::; cN;n)g

has a converfgent subsequence in C2N+1 and so g0ns converge uniformly to a
trigonometric polynomial.

Problem 268

Give an example to show that @
@y

bZ
a

f(x; y)dxmay not be equal to

bZ
a

@
@yf(x; y)dx

even if @
@yf(x; y) is integrable on [a; b]:

Let

f(x; y) =

(
xy3

(x2+y2)2 if (x; y) 6= (0; 0)
0 if (x; y) = (0; 0)

Then @
@y

bZ
a

f(x; y)dx = 1
2 at y = 0 and

bZ
a

@
@yf(x; y)dx = 0 at y = 0: In fact

@
@yf(x; y) is identically 0 when y = 0!

Problem 269

Prove that there exists a Borel probability measure � on R such that ^
� is

di¤erentiable at every point but
Z
jxj d�(x) =1:

It is well known that
1X
n=1

an sin(nx) converges uniformly on R if an # 0 and
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nan ! 0. [cf. Fourier Series by Edwards]. Let FN (x) =
NX
n=2

an sin(nx) with

an =
1

n logn . Let � be the discrete proability measure which puts mass
c

n2 logn
at +n and �n for n = 2; 3; :::; c being chosen such that � is a probability

measure. Then
^
�(t) =

1X
n=1

2c
n2 logn cos(nt). Let GN (t) =

NX
n=1

2c
n2 logn cos(nt).

Then GN ! ^
�(t) uniformly and G0N (t) = �

NX
n=1

2c
n logn sin(nt) = �2cFN (t) !

�2c
1X
n=1

an sin(nx) uniformly. It follows that
^
� is di¤erentiable at all points and

the derivative is �2c
1X
n=1

an sin(nx).

Problem 270

Find a bounded sequence fang which does not converge in Cesaro sense.

Let nk+1 > 3nk and aj = (�1)k nk+1+nknk+1�nk for nk � j < nk+1. Then snk = �nk
if k is odd and nk if k is even.

Problem 271

Prove that
1X

n=�1
e�n

2�z = 1p
z

1X
n=�1

en
2�=z for Re z > 0:

Of course,
p
z is interpreted in the obvious way: it is e

1
2Log(z) where Log(z)

is the principal branch of logarithm.
This result follows easily by applying the Poisson Summation Formula to

the function e�x
2a=4� where a > 0 and noting that if the desire formula holds

for z 2 (0;1) it holds for Re z > 0:

Problem 272

Let H = I[0;1=2) � I[1=2;1) and Hj;k(x) = 2j=2H(2jx � k) for x 2 R; j 2 Z
and k 2 Z. Show that fHj;k : j 2 Z; k 2 Zg is an orthonormal basis of L2(R).

Let j < j0. Then
Z
H(2jx�k)H(2j0x�k0)dx =

Z
H(y)H(2j

0�jy�2j0�jk�
k0)dy

=

Z 1=2

0

H(2j
0�jy�2j0�jk�k0)dy�

Z 1

1=2

H(2j
0�jy�2j0�jk�k0)dy. Let l = j0�

j so l 2 N. Now
Z 1=2

0

H(2j
0�jy�2j0�jk�k0)dy =

Z 1=2

0

H(2ly�m)dy wherem =
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2lk+k0. But
Z 1=2

0

H(2ly�m)dy =
Z 2l�1�m

�m
H(z)dz = 0 because

r+1Z
r

H(z)dz = 0

for any integer r. Similarly,
Z 1

1=2

H(2j
0�jy� 2j0�jk� k0)dy =

Z 1

1=2

H(2ly�m)dy

where m = 2lk + k0. But
Z 1

1=2

H(2ly � m)dy =

Z 2l�m

2l�1�m
H(z)dz = 0. We

have proved that fHj;k : j; k 2 Zg is an orthogonal set. Since H2 = I[0;1) we

get H2
j;k(x) = 2jI[0;1)(2

jx � k) = 2jI[ k
2j
; k+1
2j

) and so
Z
H2
j;k(x)dx = 1. Thus

fHj;k : j; k 2 Zg is orthonormal.
To prove completeness let f 2 L2(R) and

Z
f(x)Hj;k(x)dx = 0 for all

integers j and k. We have to show that f = 0 a.e.. We �rst show that

f is a.e. constant on [0; 1). Consider
Z
f(x)[I[ i�12n ; i

2n )
� I[ i

2n ;
i+1
2n )](x)dx =Z

f(x)[I[0; 12 ) � I[ 12 ;1)](2
n�1(x� i�1

2n )dx = 2
�n�1

2

Z
f(x)Hn�1; i�12

(x)dx = 0 pro-

vided i is odd. ThusZ
f(x)I[ i�12n ; i

2n )
(x)dx =

Z
f(x)I[ i

2n ;
i+1
2n )(x)dx if i is odd.

To see that this holds for even values of i also we use induction on n. It is
easy to see that the result holds for n = 1 and n = 2. Now let j be a positive in-

teger and a =
Z
f(x)I[ 2i�22n ; 2j�12n )(x)dx =

Z
f(x)I[ 2i�12n ; 2j2n )

(x)dx (by the previous

case with i = 2j � 1). Let b =
Z
f(x)I[ 2i2n ;

2j+1
2n )(x)dx =

Z
f(x)I[ 2i+12n ; 2j+22n )(x)dx

(by the previous case with i = 2j+1). We have 2a =
Z
f(x)I[ 2i�22n ; 2j�12n )(x)dx+Z

f(x)I[ 2i�12n ; 2j2n )
(x)dx =

Z
f(x)I[ 2i�22n ; 2j2n )

(x)dx =

Z
f(x)I[ i�1

2n�1
; j

2n�1
)(x)dx and

2b =

Z
f(x)I[ 2i2n ;

2j+1
2n )(x)dx+

Z
f(x)I[ 2i+12n ; 2j+22n )(x)dx =

Z
f(x)I[ 2i2n ;

2j+2
2n )(x)dx =Z

f(x)I[ i

2n�1
; j+1

2n�1
)(x)dx:However induction hypothesis implies that

Z
f(x)I[ i�1

2n�1
; i

2n�1
)(x)dx =Z

f(x)I[ i

2n�1
; i+1

2n�1
)(x)dx for all i (even or odd) and so 2a = 2b and a = b: SoZ

f(x)I[ 2i�12n ; 2j2n )
(x)dx =

Z
f(x)I[ 2i2n ;

2j+1
2n )(x)dx showing that the desired rela-

tion holds for i even.

Now let x and y be Lebsgue points of f in (0; 1). Then f(x) = lim 2n
f[2nx]+1g=2nZ
[2nx]=2n

f(t)dt
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and f(y) = lim 2n

f[2ny]+1g=2nZ
[2ny]=2n

f(t)dt. It follows that f(x) = f(y). Thus f is a

constant a.e. on (0; 1). Note that f(x +m) is also orthogonal to Hj;k for all j
and k. We conclude that f is a constant on each of the intervals (n; n+1). Now

0 =

Z
f(x)H�1;k(x)dx = 2�1=2

Z
f(x)H(x2 � k)dx which gives

2k+1Z
2k

f(x)dx =

2k+2Z
2k+1

f(x)dx. Thus, if �k is the constant value of f on (k; k+1) then �2k = �2k+1.

This means that f is constant on (0; 2); (2; 4); ::: ( and (�2; 0(�4;�2); :::): A sim-
ilar argument using the fact that

Z
f(x)H�2;k(x)dx = 0 for all k shows that f

is a constant on (0; 4); (4; 8); ::: (and similar result on negative real axis). An
induction argument now shows that f is a constant on R. Since f 2 L2 it follows
that f = 0 a.e.

Problem 273

Let Hj;k be as in Problem 272. For n = 2j+k; j = 0; 1; 2; ::::k 2 f0; 1; :::; 2j�
1g let �n(x) = 2j=2H(2jx�k) and de�ne �0(x) = 1 for all x. Show that f�ngn�0
is an orthonormal basis for L2[0; 1]:

De�ne f to be 0 on Rn[0; 1] and think of f as a function in L2(R): If f
is orthogonal to each �n then it is orthogonal to Hj;k for j = 0; 1; 2; :::; k =
0; 1; :::; 2j � 1. If k < 0 or k � 2j then Hj;k vanishes on (0; 1) for any j 2 Z.
If j < 0 and k � 1 then also Hj;k vanishes on (0; 1). Thus

Z
fHj;k = 0 in

these cases. For k = 0 the hypothesis implies
Z
f = 0 and this gives

Z
fHj;k =

1Z
0

f � 0 = 0. It follows from Problem 272 that f = 0 a.e.

Problem 274

Show that there is no f 2 L2(R) such that the functions fn(x) = f(x�n); n 2
Z form an orthonormal basis for L2(R):

Any g 2 L2(R) is of the type
1X

n=�1
anf(x� n) (L2 sum). This gives

^
g(t) =

m(t)
^

f(t) a.e.. wherem(t) =
1X

n=�1
ane

�int. Choosing g such that
^
g is continuous
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and never 0 we conclude that ft :
^

f(t) 6= 0g is a null set. Now I(�1=2;1=2)
^

f

belongs to L2(R) and hence there exists g 2 L2(R) such that ^g = I(�1=2;1=2)
^

f :

But
^
g(t) = m(t)

^

f(t) a.e.. and this gives I(�1=2;1=2)
^

f = m(t)
^

f(t) a.e.. Combined

with the fact that ft :
^

f(t) 6= 0g is a null set we get I(�1=2;1=2) = m(t) a.e.. This
is a contradiction because m has period 2�:

Problem 275
[This problem extends Problem 274]

Show that there is no f 2 L2(R) such that for some constants �; � with
0 < � < � <1 the inequlaities

�
1X

n=�1
janj2 �


1X

n=�1
anf(x� n)


2

2

� �
1X

n=�1
janj2 for every �nitely non-

zero sequence fang and such that the closed subspace spanned by the functions
f(x� n); n 2 Z is all of L2(R).

It is a well known fact that the hypothesis implies � �
1X

n=�1

����^f(x+ 2n�)����2 �
� a.e. [ See p 22 of Wojtaszczyk or p 306 of Pinsky].

Let g(x) =
1X

n=�1
anf(x� n) where fang 2 l2. Then

^
g(t) = m(t)

^

f(t) where

m(t) =

1X
n=�1

ane
�int. We have

1X
n=�1

���^g(x+ 2n�)���2 = 1X
n=�1

����^f(x+ 2n�)����2 jm(t)j2. We can choose fang

such that jm(t)j2 = 1

2�

1X
n=�1

����^f(x+2n�)����2
since the right side of this equation

is a bounded measurable function ( and hence an L2 function on [0; 2�]). It

then follows that
1X

n=�1

���^g(x+ 2n�)���2 = 1
2� a.e. which implies ( by the con-

verse of the result mentioned above) that fg(x � n)g is orthonormal. Also
^

f(t) = [m(t)]�1
^
g(t) and [m(t)]�1 is also a periodic L2 function. This shows

that f(x� k) =
1X

n=�1
bng(x� n� k) where fbng 2 l2. It follows that f(x� k)

belongs to the closed subspace spanned by fg(x � n) : n 2 Zg for each integer
k. Combined with the hypothesis this implies that fg(x � n) : n 2 Zg is an
orthonormal basis for L2(R) and this is impossible by Problem 274.
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Problem 276

Let P be the Borel probability measure on R with density 1
�(1+x2) . De�ne

T : R ! R by T (x) = 1
2 (x � 1=x) if x 6= 0 and T (0) = 0. Show that T is a

measure preserving transformation on (R;B; P ); i.e. P � T�1 = P:

Let f be a continuous function with compact support. We prove thatZ
fdP � T�1 =

Z
fdP . Note that f(T (x)) = 0 for jxj su¢ ciently small.

Consider

1Z
0

f( 12 (x � 1=x))dP (x) =
1
2

1Z
�1

f(y)dP (y). [ Note that 1
�(1+x2)dx =

1
�(1+x2)

2
1+ 1

x2
dy = 2

�(2+x2+ 1
x2
)
dy

= 2
�(4+4y2)dy =

1
2dP (y) where y =

1
2 (x�1=x)]. Also

0Z
�1

f( 12 (x�1=x))dP (x) =

1Z
0

g( 12 (x � 1=x))dP (x) where g(x) = f(�x) and so
0Z

�1

f( 12 (x � 1=x))dP (x) =

1
2

1Z
�1

g(y)dP (y) = 1
2

1Z
�1

f(y)dP (y). This completes the proof.

Problem 277

Let fang be a bounded sequence of complex numbers and 0 < p <1: Show

that 1
n

n�1X
k=0

jakj ! 0 if and only if 1n

n�1X
k=0

jakjp ! 0:

It su¢ ces to show that 1
n

n�1X
k=0

jakj ! 0 if and only if there exists I �

f0; 1; 2; :::g such that lim
n=2I;n!1

an = 0 and #fI\[0;n)g
n ! 0 as n ! 1. Sup-

pose 1
n

n�1X
k=0

jakj ! 0. For k = 1; 2; ::: let Ik = fn � 0 : janj � 1
kg. Claim:

#fIk\[0;n)g
n ! 0 as n ! 1 for each k. Indeed, this follows from the in-

equality 1
n

n�1X
k=0

jakj � #fIk\[0;n)g
nk . There exist integers 0 = n0 < n1 < :::

such that n � nk implies
#fIk\[0;n)g

n < 1
k . Let I =

1[
k=0

fIk+1 \ [nk; nk+1)g.

Let nk � n < nk+1. Then I \ [0; n) � [Ik \ [0; nk)] [ [Ik+1 \ [0; n)]. Hence
#fI\[0;n)g

n � #fIk\[0;nk)g
n + #fIk+1\[0;n)g

n < nk
n
1
k +

1
k+1 �

1
k +

1
k+1 . We have
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proved that #fI\[0;n)g
n ! 0 as n ! 1. If n > nk and n =2 I then n =2 Ik+1 (

for, otherwise, there exists � � k such that n� � n < n�+1 and n 2 Ik+1 � I�+1
so n 2 I�+1 \ [n�; n�+1) � I which is a contradiction). Thus janj < 1

k+1 for
n > nk, n =2 I completing the proof of one the �only if�part. For the �if�part let
janj � C and let � > 0. There exisrs n� such that janj < � if n > n� and n =2 I.
Also there exists m� such that

#fI\[0;n)g
n < � if n > m�. For n > maxfn�;m�g

we have 1
n

n�1X
k=0

jakj < �+ �C.

[We have proved a stronger result than what was stated. In particular we

have proved that 1
n

n�1X
k=0

jakj ! 0 implies 1
n

n�1X
k=0

f(ak) ! 0 for any bounded

positive function function f continuous at 0. See Problem 294 for a related
result].

Problem 278
Show that any positive linear operator T from Lp(�) (where 1 � p < 1)

into itself is bounded.

If T is not bounded the there exists ffng � Lp(�) such that kfnkp = 1

and kTfnkp > n2. We may also assume that f 0ns are non-negative. Let f =
1X
k=1

fn
n2 . [ The series converges in L

p]. We have
Z
(Tf)pd� �

Z
(T

NX
k=1

fn
n2 )

pd� �

NX
k=1

Z
(Tfnn2 )

pd� >
NX
k=1

n2p

n2p = N for every N which is a contradiction. [ We have

used the fact that (
NX
k=1

an)
p �

NX
k=1

apn for all non-negative numbers an which

follows from the fact that t ! ti + (1 � t)p; 0 � t � 1 attains its maximum at
t = 1

2 and the maximum value is � 1; so ap + bp � (a+ b)p for a; b � 0].

Problem 279

[This is a standard result that follows from approximation of irrationals by
rationals]
If � is a an irrational number in (0; 1) show that the numbers fn�(mod 1) :

n 2 Ng is dense in (0; 1): [Equivalently, if c is a complex number which is not
a root of unity such that jcj = 1 then the set f1; c; c2; :::g is dense in the unit
circle].

By a well known result in Number Theory [cf. Hardy and Wright: Theory

of Numbers] we can �nd positive integers pn; qn such that
����� pn

qn

��� < 1
q2n
. Note

that pn; qn !1 and �� pn�[
p
qn]

qn
=

[
p
qn]

qn
� (�� pn

qn
) >

[
p
qn]

qn
� 1

q2n
> 0
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and �� pn�[
p
qn]

qn
<

[
p
qn]

qn
+ 1
q2n
! 0. This shows we can assume (by changing

p0ns if necessary that)
pn
qn
" �. Now 0 < qn�� pn = qn[�� pn

qn
] < 1

qn
. It follows

that the set fn�(mod 1) : n 2 Ng contains a sequence frng decreasing (strictly)
to 0. Now let 0 < a < b < 1. Let r 2 fn�(mod 1) : n 2 Ng with 0 < r < b� a.
The interval (ar ;

b
r ) has length

b�a
r > 1 and hence it contains an integer k. Since

a
r > 0 it is clear that k is a positive integer. Thus kr is a point of (a; b) which
belongs to fn�(mod 1) : n 2 Ng:

Second proof: let jcj = 1 and assume that cn 6= 1 for any positive integer
n. Since c; c2; c3; ::: are all distinct and this sequence has a convergent subse-
quence. This subsequenec is Cauchy, so given � 2 (0; 1), we can �nd 1 � n < m
such that jcn � cmj < �. Let c = eit; 0 � t < 2� and consider the points
eitn; eitn+i(m�n); eitn+2i(m�n); :::; eitn+iN(m�n). Of course there is a smallest
integer N such that tn + N(m � n) � 2�. The distance between any two
points consecutive points of feitn; eitn+i(m�n); eitn+2i(m�n); :::; eitn+iN(m�n)g is
less than �. This gives a �nite subset of fc; c2; c3; :::g such that any point of S1
is at distance less than � from this �nite set.
[ More precisely, if 0 � s < 2� then tn+ l(m� n) � s < tn+ (l+ 1)(m� n)

for some l and
��eis � etn+l(m�n)�� � ��etn+l(m�n) � etn+(l+1)(m�n)�� < � since

0 � � < � <  < 2�;
��ei� � ei�� < � )

��ei� � ei���2 = 2 � 2 cos(� � �) �
2�2 cos(��) =

��ei� � ei��2 where we used that fact that 2�2 cos(��) < �2

so cos(� � ) > 1 � �2=2 > 0 which implies j�� j < �=2 and hence that
cos(�� �) � cos(�� )]

Problem 280

Using the fact that any continuous additive map from R into itself is constant
times the identity give an elemenatry proof of the fact that the circle group has
only two continuous automorphisms, the maps a ! 1

a and the identity. Also
�nd all continuous homomorphisms of S1.

Remark: Problems 612 and 613 have stronger results with di¤erent proofs.

Let T : S1 ! S1 be a continuous homomorphism. Note that T (1) = 1:
De�ne f : R ! R by f(t) = T (e2�it). Then f is continuous, f(0) = 1 and
never vanishes. Fix a positive integer N . On [�N;N ] we can �nd a continuous
map gN (a continuous �logarithm�of f)such that f(t) = e2�igN (t);�N � t � N
and gN (0) = 0. [ Logarithms exist locally on S1 and we can patch up local
logarithms using compactness of [�N;N ]]. Now gN are consistently de�ned in
the sense gN = gN+1 on [�N;N ]. [ e2�igN (t) = e2�igN+1(t) shows that gN+!�gN
is an integer valued continuous function, hence a constant. Since it vanishes at 0
we get gN = gN+1 on [�N;N ]]. We conclude that there is a continuous function
g : R! R such that T (e2�it) = e2�ig(t) and g(0) = 0. Since g is continuous and
g(t + s) � g(t) � g(s) is integer valued [ because e2�i[g(t+s)�g(t)�g(s)] = 1] we
see that g is a continuous additive real function on R and hence there is a real
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number a such that g(t) = at for all t. Thus T (e2�it) = f(t) = e2�ig(t) = e2�iat.
Now note that 1 = T (1) = Tf(e�i)2g = fT (e�i)g2 = e2�ia. Hence a is an
interger, say m and T (z) = zm 8z 2 S1. In particular, if T is a bijection then
m = �1 and T (z) � z or T (z) � z�1.

Problem 281

Find all continuous automorphisms of the torus S1 � S1 (coordinate-wise
multiplication)

Let T be an automorphism of the torus S1 � S1(which is a group under
coordinatewise multiplication). Let T1(z) be the �rst coordinate of T (z; 1)
and T2(z) be the second coordinate of T (z; 1): Let T3(z) be the �rst coor-
dinate of T (1; z) and T4(z) be the second coordinate of T (1; z): Then Tj is
a homomorphism of S1 for j = 1; 2; 3; 4: Hence there exist integers j; k; n;m
such that T1(z) = zj ; v; T2(z) = zk; T3(z) = zn; T4(z) = zm. It follows that
T (a; b) = T (a; 1)T (1; b) = (aj ; ak)(bn; bm) = (ajbn; akbm). We have to deter-
mine when this map is an automorphism. If T is an automorphism the so is T�1

and so T�1(a; b) = (aj
0
bn

0
; ak

0
bm

0
) for some integers j0; n0; k0;m0: We now have

(a; b) = TT�1(a; b) = (ajj
0+k0nbjn

0+m0n; aj
0k+k0mbn

0k+m0m)8a; b 2 S1. This im-
plies jj0 + k0n = 1; jn0 +m0n = 0; j0k + k0m = 0 and n0k +m0m = 1. In other

words
�

n j
m k

��
k0 m0

j0 n0

�
= 1. Taking determinants and noting that the

determinants of the two matrices are integers we conclude that nk �mj = �1.
Conversely suppose nk�mj = �1. The inverse of

�
n j
m k

�
has integer entries

because the detrminant is �1 and the adjoint has integer entries. Thus there is
a transformation of the type S(a; b) = (aj

0
bn

0
; ak

0
bm

0
) with TS = I = ST . It

follows that T is bijective with an inverse which is also a homomorphism. The
inverse is automatically continuous.
Problem 282

Let X be a compact Hausdor¤ space. Show that C(X) is separable if and
only if X is metrizable.

Suppose C(X) has a countable dense subset ffng. De�ne d(x; y) =
1X
n=1

jfn(x)�fn(y)j
2n[1+jfn(x)�fn(y)j] .

Since ffng separates points it is clear that d is a metric on X. Consider the
identity map : X ! X where the domain is given the original topology and
the range is given the metric topology. To prove that this map is continuous
consider an open ball B(x; r) in (X; d). Let y be in this ball. Choose N such

that 1
2N

< r � d(x; y). We claim that if z 2
N\
i=1

f�1i ft : jt� fi(y)j < �g then

z 2 B(x; r) provided � is su¢ ciently small. Since
N\
i=1

f�1i ft : jt� fi(y)j < �g
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is an open set in the given topology which contains y we can conclude that
the identity map is continuous; its inverse is automatically continuous since
X is Hausdor¤ with the metric topology and compact with the original topol-
ogy. Thus we can conclude that d metrizes the given topology on X complet-

ing one part of the statement. So let z 2
N\
i=1

f�1i ft : jt� fi(y)j < �g. Then

d(x; z) � d(x; y) +
1X
n=1

jfn(z)�fn(y)j
2n[1+jfn(z)�fn(y)j] < d(x; y) + 1

2N
+

NX
n=1

jfn(z)�fn(y)j
2n[1+jfn(z)�fn(y)j]

< d(x; y) + 1
2N
+ �

1+�

NX
n=1

1
2N

< r if �
1+� < r � d(x; y) � 1

2N
. We now prove

the other half of the statement. Let d be a metric for the topology of X.
Let fxng be a countable dense subset of X. For each n open balls of radius
1
n around the points xi cover X and hence there exists an integer kn such

that X =

kn[
i=1

B(xi;
1
n ): For each n and i � kn there is a continuous function

fi;n : X ! [0; 1] such that fi;n = 1 on the closed ball around xi with radius
1
2n and 0 in the complement of the ball B(xi;

1
n ). Let M be the collection of

all �nite linear combinations of �nite products of the functions ffi;ng. This is
an algebra. If we show that the functions fi;n: separate points of X it would
follow by Stone-Weierstrass Theorem thatM is dense in C(X) and we can then
conclude that rational linear combinations of �nite products of the functions
ffi;ng give us a countable dense subset of C(X). If x 6= y then there exists n
such that 2

n < d(x; y). If x 2 B(xi;
1
n ) then fin(x) = 1 and fi;n(y) = 0. This

completes the proof.

Problem 283

Prove or disprove the following:
1) if f is monotonically increasing on [a; b] then we can �nd continuous

functions fn; gn (n = 1; 2; :::) such that �n � f � gn; gn # f and �n " f
pointwise.
2) if f is Riemann integrable on [a; b] then we can �nd continuous functions

�n; gn (n = 1; 2; :::) which are uniformly bounded such that �n � f � gn and
gn � �n ! 0 almost everwhere:

The �rst statement is false: f = inffgn : n 2 Ng implies that f is upper semi-
continuous and f = supffn : n 2 Ng implies that f is is lower semi-continuous.
Thus f is necessarily continuous

2) is true. Let fti : 1 � i � kg be a partition of [a; b]. Let g =
kX
i=1

miI[ti�1;ti)

and h =
kX
i=1

MiI[ti�1;ti) where mi and Mi are the in�mum and the supremum
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of f on [ti�1; ti]. Let � > 0. Let 1 � i � k. If Mi�1 � Mi we modify h on a
smal interval to the left of ti and if Mi�1 > Mi we modify it on the right in
such a way that the modi�ed function still dominates f and it is continuous at
t. By this procedure we can �nd piece-wise linear continuous functions G and
H such that G � f � H and mfx : g(x) 6= G(x)g < �;mfx : h(x) 6= H(x)g < �.
Taking a sequence of partitions such that hn�gn ! 0 a.e. for the corresponding
functions gn and hn and then choosing piece-wise linear continuous functions
Gn;Hn with mfx : Gn 6= gng < 1

2n and mfx : Hn 6= hng < 1
2n : If x =2

lim supfx : Gn 6= gng [ limm supfx : Hn 6= hng and gn(x) � hn(x) ! 0 then
we get Gn(x) � Hn(x) ! 0. It is known that gn(x) � hn(x) ! 0 a.e. and
this completes the proof. [ A trivial modi�cation makes the functions Gn;Hn

uniformly bounded].

Problem 284

Use previous problem to prove the following result of Weyl:

if f 2 C[0; 1] and T (x) = x+�mod(1) where � is irrational the 1n

n�1X
k=0

f(T kx)!

1Z
0

f(x)dx uniformly for any Riemann integrable function f .

For continuous f this result is proved using The Ergodic Theorem and a
Functional Analytic argument (which is outlined below) For f Riemann in-
tegrable choose approximating continuous functions as in part 2) of previuos

problem. We have 1
n

n�1X
k=0

�j(T
kx)!

1Z
0

�j(x)dx and
1
n

n�1X
k=0

gj(T
kx)!

1Z
0

gj(x)dx

uniformly for each �xed j. Note that

1Z
0

�j(x)dx and

1Z
0

gj(x)dx both converge

to

1Z
0

f(x)dx by Bounded Convergence Theorem. These facts, together with

the inequalities 1
n

n�1X
k=0

�j(T
kx) � 1

n

n�1X
k=0

f(T kx) � 1
n

n�1X
k=0

gj(T
kx) clearly imply

1
n

n�1X
k=0

f(T kx)!
1Z
0

f(x)dx uniformly.

[ We now sketch a proof of the result for continuous f . Suppose the re-
sult is false. Then there exists � > 0; nj " 1 and points x(j) such that������ 1nj

nj�1X
k=0

f(T kx(j))�
1Z
0

f

������ > � for all j. Let Pj = 1
nj

nj�1X
k=0

�Tk(x(j)). By separabil-

ity of C[0; 1] and Banach-Alaoglu Theorem we can �nd a subsequence fjlg and
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a measure Q such that
Z
hdPjl !

Z
hdQ for any h 2 C[0; 1]. Since

Z
hdQ � 0

for non-negative h and since
Z
1dQ = lim

Z
1dPjl = 1 we see that Q is a probab-

bility measure. By de�nition of the measures Pj this gives 1
nj

nj�1X
k=0

h(T kx(j))!

1Z
0

hdQ: Hence

1Z
0

hdQ � T�1 =
1Z
0

h(T (y))dQ(y) = lim
j!1

1
nj

nj�1X
k=0

h(T � T kx(j)) =

lim
j!1

1
nj

njX
k=1

h(T kx(j)) = lim
j!1

1
nj

nj�1X
k=0

h(T kx(j)) (since h is bounded) and this

gives

1Z
0

hdQ�T�1 =
1Z
0

hdQ for any continuous function h. Taking h(x) = e2�inx

we get

1Z
0

e2�in(x+�)dQ(x) =

1Z
0

e2�inxdQ(x) by the de�nition of T and we

get e2�in�
1Z
0

e2�inxdQ(x) =

1Z
0

e2�inxdQ(x). Since � is irrational this gives

1Z
0

e2�inxdQ(x) = 0 for all n 6= 0. Bu then

1Z
0

e2�inxdQ(x) =

1Z
0

e2�inxdx for

all n 6= 0 and hence

1Z
0

pdQ =

1Z
0

p(x)dx for any trigonometric polynomial p.

It follows from Fejer�s Theorem that the same holds for all continous func-
tions p. Thus Q(x) is nothing but the Lebesgue measure on [0; 1]. However������ 1nj

nj�1X
k=0

f(T kx(j))�
1Z
0

f

������ > � for all j implies that

������
Z
fdQ�

1Z
0

f

������ � � which is

a contradiction.

PROBLEM 285 [BY K B ATHREYA]

Let �n =
1
n

nX
k=1

�log k�[log k] where log denotes logarithm to base 2 and [x] is

the greatest integer not exceeding x. Does this sequence of probability measures
on [0; 1] converge weakly?
[ Weak convegence here is actually weak* convergence in C�[0; 1]]

We claim that �n ! � where d�(x) = (loge 2)2
xdx: Bt Stone-Weiertstrass

Theorem it su¢ ces to show that
Z
fdn !

Z
fd� if f(x) = 2cx where c is a real
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number. For this f we have
Z
fdn =

1
n

nX
k=1

2c[log k�[log k]] = 1
n

logn�1X
m=0

2m+1�1X
k=2m

kc2�mc+

1
n2

c[logn�[logn]]. Of course, the last term tends to 0. Now, assuming that

c � 0;
2m+1�1X
k=2m

kc �
2m+1Z
2m

xcdx = 2(m+1)(c+1)�2m(c+1)

c+1 = 2mc2m 2c+1�1
c+1 and so

1
n

logn�1X
m=0

2m+1�1X
k=2m

kc2�mc � 1
n

logn�1X
m=0

2m 2c+1�1
c+1

= 1
n (n� 1)

2c+1�1
c+1 ! 2c+1�1

c+1 as n!1. Further
2m+1�1X
k=2m

kc �
2m+1�1Z
2m�1

xcdx =

f2m+1�1gc+1�f2m�1gc+1
c+1

= 2mc2m 1
c+1f(2�

1
2m )

c+1�(1� 1
2m )

c+1g and f(2� 1
2m )

c+1�(1� 1
2m )

c+1g !

2c+1 � 1 which shows that lim inf 1n
logn�1X
m=0

2m+1�1X
k=2m

kc2�mc � 2c+1�1
c+1 . We have

proved that
Z
2cxd�n(x) ! 2c+1�1

c+1 =

Z
2cxd�(x) for all c � 0. A similar

argument holds for c < 0.

Problem 286

Let P be a Borel probability measure on a compact metric space X such
that P (A) = 0 or 1 for any Borel set A. Show that p = �x for some x 2 X.

For each n let fAn:ig be a partition of X into sets of diameter at most 1
n .

By hypothesis there exists in such that P (Ain) = 1. Let Cn be the closure of
Ain . Then P (Cn) = 1 and hence P (C1 \ C2 \ ::: \ Cn) = 1 too. The family
fCng therefore has �nite intersection property and hence there is a point x in
their intersection. But the diameter of Cn tends to 0 so fxg = \Cn. It follows
that Pfxg = 1:

Problem 287

Let f and g be non-negative measurable functions on [0; 1] such that
Z
E

f(x)dx <

1 )
Z
E

g(x)dx < 1. Show that g � Cf + h for some non-negative integrable

function h and some C 2 (0;1).
We prove the following stronger result: if � and � are positive non-atomic

mesures on (
;F) such that �(E) < 1 ) �(E) < 1. Then there exists a
�nite positive measure � and C 2 (0;1). such that �(E) � C�(E) + �(E) for
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all E 2 F . Once this result is proved we can take �(E) =
Z
E

f; �(E) =

Z
E

g to

get
Z
E

g � C

Z
E

f + �(E) and de�ne h = maxfg � Cf; 0g so that g � Cf + h:

Note that
Z
E

(g � Cf) � �(E) for all E which implies
Z
E

(g � Cf)+ � �(E \

fg � Cf > 0g) � �(E). Thus
Z
h � �([0; 1]) < 1: Now suppose � and � are

as above. We claim that there exists C 2 (0;1) such that �(E) � 2 implies
�(E) � C. If this is false then we can �nd sets fEng such that �(En) � 2 but

�(En) � 2n+1 +

n�1X
k=1

�(Ek) and �(En) < 1. [ The last sum is taken to be 0

when n = 1]. Let An = EnnfE1 [ E2 [ ::: [ En�1g so that A0ns are disjoint,

�(An) � 2 and 1 > �(An) � �(En) �
n�1X
k=1

�(Ek) � 2n+1. We can write An

as a disjoint union
2n[
j=1

An;j with �(An;j) = 1 for 1 � j < 2n and �(An;2n) �

2n+1 � (2n � 1) � 1. Since
2nX
j=1

�(An;j) = �(An) � 2 we can �nd jn � 2n with

�(An;jn) � 2
2n = 21�n. Let A =

1[
j=1

An;jn . Then �(A) �
1X
j=1

21�n = 2 but

�(A) =

1X
j=1

�(An;jn) �
1X
j=1

1 = 1 contradicting the hypothesis. This proves

our claim. We now show that �(E) � C�(E) + C for all E. We may suppose

�(E) < 1. Let n � 1 � �(E) < n. Write E as a disjoint union
n[
j=1

Ej with

�(Ej) = 1 for j < n and �(Em) � 1. We have �(E) �
nX
j=1

�(Ej) � Cn (by the

claim): Hence �(E) � Cn = C
n�1X
j=1

�(Ej) + C � C(�(E) + 1) as asserted. Let

� = (��C�)+. � is a positive measure and �(E) � �(E)�C�(E) so � � C�+�.
Also �(E) = (� � C�)(E \ F ) where fF; F cg is a Hahn decomposition of the
signed measure � � C�. So �(E) � C for ane E proving that � is a �nite
measure.

Problem 288
Let X be a non-empty set and let � be the smallest topology that makes a

given function f : X ! R continuous. Let g : (X; �)! R be continuous. Prove
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or disprove that there exists a continuous function h : R ! R with g = h � f .
Answer the same question for measurable functions.
For measurable functions the result is true and the proof follows easily from

simple function approximation. If f : R ! R and g : R ! R are de�ned by
f(x) = e�jxj and g(x) = ejxj then g = 1

f and hence g is continuous w.r.t. the
topology generated by f . However if h : R! R is continuous and g = h�f then
h(t) = 1

t for all t 2 (0; 1] which contradicts continuity of h at 0: Note however
that under the hypothesis of the problem f(x) = f(y) ) g(x) = g(y) and we
can de�ne h on the range of f by g = h � f . Further it is easy to see that h is
continuous on the range of f . Extending h to a continuous function on R is not
always possible.

Problem 289
Let (
;F ; �) be a measure space. Show that the TFE:
1) Lp � Lq for some p < q in (0;1)
2) inff�(E) : �(E) > 0g > 0
3) Lp � Lq for all p < q in (0;1)

We prove 1) implies 2) and 2) implies 3). Since 3) obviuously implies 1) the
proof would be complete. Let 1) hold. Note that Lp� � Lq� for all � 2 (0;1)
so we may suppose p � 1. Let T : Lp ! Lq be the inclusion map. This
linear map has closed graph. Hence it is bounded. Let kfkq � C kfkp for all
f 2 Lp hence for all measurable f . Then �1=q(E) � C�1=p(E) for all E. We
get inff�(E) : �(E) > 0g � C�f

1
p�

1
q g

�1
and 2) holds. Now let 2) hold and 0 <

p < q <1. Let f 2 Lp. Let An = fjf j > ng. Since �(An) � n�p
Z
jf jp d�! 0

we conclude from 2) that �(An) = 0 for n su¢ ciently large. Thus f 2 L1 andZ
jf jq d� � kfkq�p1

Z
jf jp d� <1

Problem 290

Let (
;F ; �) be a measure space. Show that the TFE:
1) Lq � Lp for some p < q in (0;1)
2) supf�(E) : �(E) <1g <1
3) Lq � Lp for all p < q in (0;1)

Let 1) hold. As in Problem 289 we may suppose p � 1 and use Closed
Graph Theorem to conclude that kfkp � C kfkq for all f 2 Lq hence for all
measurable f . Thus �1=p(E) � C�1=q(E) for all E. It follows that �(E) �
Cf

1
p�

1
q g

�1
whenever �(E) < 1 so 2) holds. Thus 1) implies 2). Now let 2)

hold. Let f 2 Lq and An = f 1
n+1 � jf j < 1

ng. Then �(An) < 1 and hence

�(An) � C � supf�(E) : �(E) < 1g. Also �(
n[
j=1

Aj) =
nX
j=1

�(Aj) < 1 and
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2) implies
nX
j=1

�(Aj) = �(
n[
j=1

Aj) � C for all n. Thus
1X
j=1

�(Aj) < 1. NowZ
jf jp d� =

Z
fjf j�1g

jf jp d�+
1X
j=1

Z
Aj

jf jp d�

�
Z
fjf j�1g

jf jq d� +
1X
j=1

j�p�(Aj) �
Z
jf jq d� +

1X
j=1

�(Aj) < 1. Thus 2)

implies 3). Of course 3) implies 1).

Problem 291

For a measure space (
;F ; �) TFE:
1) Lp * Lq whenever p and q are distinct numbers in (0;1)
2) inff�(E) : 0 < �(E) <1g = 0 and supf�(E) : 0 < �(E) <1g =1
3) for any convex set I � (0;1) there exists a measurable function f on 


such that fp 2 (0;1) :
Z
jf jp d� <1g = I

Let 2) hold. We shall construct measurable non-negative functions fi; i =

1; 2; 3; 4 such that fp 2 (0;1) :
Z
jf1jp d� < 1g == (0; 1); fp 2 (0;1) :Z

jf2jp d� <1g = (0; 1];

fp 2 (0;1) :
Z
jf3jp d� < 1g = (1;1) and fp 2 (0;1) :

Z
jf4jp d� <

1g = [1;1). Once such functions are constructed we can easily conclude that
3) holds: just note that the collection I of all convex sets I � (0;1) for which
there exists a measurable function f on 
 such that fp 2 (0;1) :

Z
jf jp d� <

1g = Ig has the following properties: I1:I2 2 I implies I1 \ I2 2 I and I 2 I
implies �I 2 I for any � 2 (0;1). We �rst note that there exists sets En; n =
1; 2; :::such that 0 < �(En+1) <

1
2�(En) < 1. Thus �(En+k) < ( 12 )

k�(En)

and
X

�(En) < 1. If Fn = EnnfEn+1 [ En+2 [ :::g then F 0ns are disjoint

and �(Fn) � �(En) � �(En \ fEn+1 [ En+2 [ :::g) � �(En) �
1X

j=n+1

�(Ej) >

�(En)(1�
1X

j=n+1

( 12 )
j�n) = 0. Thus F 0ns are disjoint sets of positive measure. Let

xn =
1X
j=n

�(Fj) : Let f1 =
X

x�1n IFn and f2 =
X

1
xn[1+log2 xn]

IFn . If 0 < p < 1

then
Z
fp1 d� =

X
xpn�(Fn) =

X
x�pn fxn � xn+1g �

X xnZ
xn+1

t�pdt <1. Also
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Z
f1d� =

X
x�1n fxn � xn+1g =1 since xn decreases to 0. [ See Problem 292

below]. Since f2 � f1 it follows that
Z
fp2 d� <1 for 0 < p < 1. We claim thatZ

f2d� < 1. This follows from the fact that
X

1
xn[1+log2 xn]

(xn � xn+1) �

X xnZ
xn+1

1
x[1+log2 x]

dx =

x1Z
0

1
x[1+log2 x]

dx � arctan(log x1) + �=2 < 1. Finally we

construct f2; f3 as follows: there exist disjoint sets Bn with 1 � �(Bn) < 1.
[Let �(An+1) > �(A1) + �(A2) + :::+ �(An) + 1 and Bn = AnnfA1 [A2 [ ::: [
An�1g]. Let yn = �(B1) + �(B2) + ::: + �(Bn) and f3 =

X
1

yn+1
IBn+1 ; f4 =X

1
yn+1[1+log2 yn+1]

IBn+1 . It can be shown that fp 2 (0;1) :
Z
jf3jp d� <

1g = (1;1) and fp 2 (0;1) :
Z
jf4jp d� < 1g = [1;1). Thus 2) implies 3).

The fact that 1) and 2) are equivalent follows by Problems 289 and 290 above.
3) implies 1) is straightforward.

[ Problems 289, 290 and 291 are due to Villani]

Problem 292

If fxng decreases strictly to 0 then
X

1
xn
(xn�xn+1) =1. If fxng increases

strictly to 1 then
X

1
xn+1

(xn+1 � xn) =1

Let fxng decrease strictly to 0: If
X

1
xn
(xn�xn+1) <1 then xn+1

xn
! 1 and

1
xn
(xn�xn+1) � 1

2xn+1
(xn�xn+1). Also

X
1

xn+1
(xn�xn+1) �

X xnZ
xn+1

1
xdx =

x1Z
0

1
xdx =1. The second part follows by replacing fxng by fx

�1
n g.

Problem 293

Let X be a compact Hausdorf space. Show that C(X) is �nite dimensional
if and only if X is a �nite set.

If X is �nite then C(X) � CX (or RX if we are considering real valued
continuous functions) which is �nite dimensional. Suppse C(X) is �nite di-
mensional. Then so is its algebraic dual. fxng is a sequence of distinct points
then it follows by Urysohn�s Lemma that f ! f(xn); n = 1; 2; ::: are a linearly
independent in this dual space.
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Problem 294

Let fang be a bounded sequence of complex numbers and 0 < p <1: Use an

elementary argument to show that 1
n

n�1X
k=0

jakj ! 0 if and only if 1n

n�1X
k=0

jakjp ! 0:

What conclusions can be drawn if fang is not assumed to be bounded?
[See also Problem 277 above].

Let S = fp 2 (0;1) : 1n
n�1X
k=0

jakjp ! 0g. It su¢ ces to show that S has the

following properties:
a) p 2 S; q > p) q 2 S
b) p 2 S ) p=2 2 S
Proof of a) is obvious: jakjq � Cq�p jakjp where C = supfjakj : k 2 Ng

b) follows by Cauchy Schwartz inequality: 1n

n�1X
k=0

jakjp=2 � 1
nf

n�1X
k=0

1g1=2f
n�1X
k=0

jakjpg1=2 =

f 1n
n�1X
k=0

jakjpg1=2

Now let fang be arbitrary. An application of Holder�s inequality (in place
of Cauchy�s inequality) shows that p 2 S; q < p ) q 2 S. Thus, if A 6= ; then
A = (0; �) or (0; �] for some � > 0 unless A = (0;1). If an = 2k�1 if n = 2k
and 0 if n is not a power of 2 then A = (0; 1). If an = 2k�1

k if n = 2k and 0 if n

is not a power of 2 then A = (0; 1]. [ 1+(
2
1 )

p+:::+( 2
k�1
k )p

2k
� 1

kp
1+2p+:::+(2k�1)p

2k
=

1
kp

2kp�1
2k(2p�1) !1 as k !1 if p > 1 so A � (0; 1]. The reverse inclusion is easy].

Replacing fang by a suitable power we get examples where A = (0; �) and
those where A = (0; �] for any given �. Thus, in all cases A = ;; A = (0;1);
A = (0; �) for some � 2 (0;1) or A = (0; �] for some � 2 (0;1).

Remark : if f is a bounded measurable function on (0;1); f�ng is a sequence
of probability measures on (0:1) and p 2 (0;1) then

Z
jf j d�n ! 0 if and only

if
Z
jf jp d�n ! 0. This equivalence fails if f is just locally integrable. (Special

case: �n is the normalized Lebesgue measure on (0; n)).

Problem 295

� Let (
;F ; �) be a non-atomic �nite measure space. [ Non-atomic means
there are no atoms,i.e. there are no sets A 2 F such that �(A) > 0 and
every set B 2 F which is contained in A satis�es the property �(B) = 0
or �(B) = �(A)]:
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Prove Sak�s Theorem that there exists a sequence of sets whose measures
decrease strictly to 0: Use this to prove the stronger result that 0 < a < �(A)
implies there is a measurable subset B of A with �(B) = a.

[ See also Problem 188 above]
For the �rst part we have to show that r � inff�(A) : �(A) > 0g = 0. If

possible let r > 0. There exists B � 
 with 0 < �(B) < �(
) and this implies
�(B) � r and �(AnB) � r. Let E1 = 
nB. Now repeat the argument with B
in place of 
. [Note that the measure of any subset of B with non-zero measure
is � r]. We get C � B such that �(C) � r and �(BjC) � r. Let E2 = BnC. An
induction argument produces a disjoint sequence of sets fEng with �(En) � r
for each n. Since this contradicts countable additivity we must have r = 0
and we have proved Sak�s Theorem. [For the second part we use an argument
given in stackexchange.com]. We may suppose A = 
. Let 0 < a < �(
). We
construct a sequence fAng of disjoint measurable sets such that �(Dn) < a for
all n where Dn = A1 [ A2 [ ::: [ An. Let A1 be any set with 0 < �(A1) < a.
Suppose we have constructed A1; A2; :::; An. We consider the following classes
of sets:
Fn = fC 2 F : C \Dn = ; and 0 < �(C) < a� �(Dn)g
Gn = fC 2 F : C \ Dn = ; and 1=n < �(C) < a � �(Dn)g. If Gn 6=

; pick An+1 2 Gn. Otherwise pick any An+1 2 Fn. [ By Sak�s Theorem
it is clear that Fn is non-empty]. Then A1; A2; :::; An; An+1 are disjoint and
�(A1 [ A2 [ ::: [ An+1) � �(Dn) + �(An+1) < �(Dn) + a � �(Dn) = a. Thus
we have proved the existence of a sequence fAng of disjoint sets such that
�(A1[A2[:::[An) < a for all n. It follows that �(A) � a where A = A1[A2[:::.
To complete the proof we show that �(A) = a. Suppose, if possible, �(A) < a.
There exists B � Ac such that 0 < �(B) < a��(A). For n su¢ ciently large we
have 1

n < �(B) < a � �(A) � a � �(Dn) which proves that Gn 6= ; and hence
An+1 2 Gn. Thus 1

n < �(An+1) for all n su¢ ciently large contradicting the fact

that
X

�(An) <1.

Problem 296

Let f : R! R be continuously di¤erentiable and � � infff 0(x) : x 2 Rg > 0.
Show that f(x) = 0 for some x.

f(x) � f(0) � �x for all x > 0 so f(x) > 0 for large positive x. Similarly,
f(0)� f(�x) � �x and f(�x) � f(0)� �x < 0 for large positive x.

Remark: let g : R! (0;1) be measurable and
1Z
0

g(x)dx =

0Z
�1

g(x)dx =1.

Let f be the inde�nite integral of g de�ned by f(x) =

xZ
0

g(t)dt if x � 0 and
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f(x) = �
0Z
x

g(t)dt if x < 0. Then f(x) ! 1 as x ! 1 and f(x) ! �1 as

x ! �1. Since f is continuous its range is all of R. Above result is a special
case of this with g replaced by f 0 and f by f � f(0):

Problem 297

Let A � [0; 1] have the following property: for any sequence frng � (0;1)
there exist intervals I1; I2; ::: such that A � I1 [ I2 [ ::: and m(In) < rn for each
n. Show that �(A) = 0 for every �nite continuous positive measure � on the
Borel sigma �eld of [0; 1] and use this to show that the Cantor set C does not
have this property.

We �rst prove an elementary fact about continuous measures. [ Def. � is
continuous if �fxg = 0 for each x]. We claim that given � > 0 there exists
� > 0 such that for any interval J of length less than � we have �(J) < �. For
each x 2 [0; 1] there is an open interval Ix centered at x such that �(Ix) < �.
Let Jx be the interval with center x and length one third the length of Ix. Let
fJx1 ; Jx2 ; :::; JxN g cover [0; 1]. Let � = minfm(Jxk) : 1 � k � Ng. Let J be
an interval whose length is less than �. There exists k such that J intersects
Jxk . Let a 2 J \ Jxk . Let y be any point of J . Then jy � aj < �. If Jxk
has mid-point c and length � then Ixk has center c and length 3�. Now
jy � cj < � + ja� cj � � + � � 2� by de�nition of �. Hence y 2 Ixk . Thus
J � Ixk and �(J) � �(Ixk) < �. This proves the claim. Now we choose positive
numbers �n; n = 1; 2; ::: such that if J is an interval of length less than �n then
�(J) < �=2n. By hypthesis there exist intervals I1; I2; ::: such that A � I1[I2[:::
and m(In) < �n for each n. It follows that �(A) �

X
�=2n = �. Since � is

arbitrary �(A) must be 0.
[Remark: a Borel set has �strong measure 0� if it has the property above.

Borel�s conjecture says that a set has strong measure 0 if and only if it is
countable].
The Cantor function yields a probability measure � such that �(C) = 1:

Hence Cantor set does not have strong measure 0.

Problem 298
Let A � R; fxng � R and assume that AnU is at most countable for any

open set U containing fxng. Show that A has strong measure 0. [ See Remark
in Problem 297 for the de�nition]
Let frng � (0;1). Let In = (xn � r2n; xn + r2n) and U =

[
n

In. U is open

and fxng � U . Hence AnU is at most countable, say AnU � fy1; y2; :::g. Let
Jn = (yn�r2n�1; yn+r2n�1). Consider the sequence of intervals J1; I1; J2; I2; :::.
The diameters of these are 2r1; 2r2; 2r3; 2r4; ::: and A � I1 [ J1 [ I2 [ J2 [ :::.
Remark: any countable set has the property above and any set with that

property is of strong measure 0: Any set with strong measure zero is a null set
w.r.t. any continuous measure.
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Problem 299

Show that there is a �� �nite Borel measure � on R such that �((a; b)) =1
whenever a < b and � << m.

Let �(E) =
Z
E

[
1X
n=1

f(x�rn)
2n ]2dx where frng is an enumeration of rational

numbers and f(x) = jxj�1=2 e�jxj if x 6= 0; f(0) = 0. Since f 2 L1(R),
1X
n=1

f(x�rn)
2n 2 L1(R) and hence the series

1X
n=1

f(x�rn)
2n converges a.e.. Hence � is

a measure and it is absolutely continuous w.r.t. Lebesgue measure. �((a; b)) �
bZ
a

[ f(x�rn)2n ]2dx = 1
22n

b�rnZ
a�rn

f2(x)dx =1 if n is choesn such that 0 2 (a�rn; b�rn)

(i.e. rn 2 (a; b)). Note that if d� = �dx where � is a non-negative �nite valued
measurable function then � is necessarily �� �nite. [ �((�N;N)\��1[0; N)) <
1 for each N ].

Problem 300 [ Order structure of positive �nite mesaures]

Let � and � be �nite positive measures and �(A) = inff
Z
gd�+

Z
(IA�g)d� :

0 � g � IAg: Show that � is a �nite positive measure, � � �; � � � and if � is
a �nite positive measure with � � �; � � � then � � �. [ i.e. � = minf�; �g].

We have �(A) �
Z
IAd� +

Z
(IA � IA)d� = �(A) and �(A) �

Z
(IA �

IA)d�+

Z
IAd� = �(A) for all A: If we show that � is �nitely additive countable

additivity would follow from the fact that � << (� + �). Also if � � �; � � �

then
Z
gd�+

Z
(IA�g)d� �

Z
�d�+

Z
(IA�g)d� = �(A) whenever 0 � g � IA

so �(A) � �(A) for all A. Thus it remains only to prove �nite additivity of �.
We �rst note that if A and B are disjoint then fg : 0 � g � IA[Bg = fg1 + g2 :
0 � g1 � IA; 0 � g2 � IBg. Hence, whenever 0 � g1 � IA; 0 � g2 � IB

we have �(A [ B) �
Z
(g1 + g2)d� +

Z
(IA[B � (g1 + g2))d� =

Z
g1d� +Z

(IA� g1)d�+
Z
g2d�+

Z
(IB � g2)d�. Taking in�mum over g1 and g2 we get

�(A [B) � �(A) + �(B). On the other hand if 0 � g � IA[B then g = g1 + g2

with 0 � g1 � IA; 0 � g2 � IB so �(A) + �(B) �
Z
g1d� +

Z
(IA � g1)d� +Z

g2d�+

Z
(IB � g2)d� =

Z
(g1 + g2)d�+

Z
(IA[B � (g1 + g2))d�
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=

Z
gd� +

Z
(IA[B � g)d�. Taking in�mum over g we get �(A) + �(B) �

�(A [B):

Problem 301
Given a sequence f�ng of �nite positive measures on a sigma algebra show

that there is a largest measure � such that � � �n for all n:

BY Problem 300 we can de�ne �n = minf�1; �2; :::; �ng. Clearly �(A) =
lim �n(A) exists for all A and � is a measure by Vitali-Hahn-Saks Theorem. [
See problem 614]

Remark: if �n � � for some �nite positive measure � then we can apply this
result to f�� �ng to show that there is smallest � with �n � � for all n: If �n
is the restiction of Lebesgue measure to (�n; n) then there is no �nte positive
� such that �n � � for all n:

Problem 302

Let C be a family of subsets of 
 which is closed under �nite intersections
such that A 2 C implies Ac is a �nite disjoint union of sets from C. Show that
the class of �nite unions of sets from C coincides with the class of �nite disjoint
unions of sets from C which coincides with the �eld generated by C. Hence show
that if C1 and C2 are �elds of subsets of 
 then the �eld generated by their union
is precisely the class of all �nite (disjoint) unions of sets of the type A\B with
A 2 C1 and B 2 C2.

The second part follows easily from the �rst (with C = fA\B : A 2 C1 and
B 2 C2g since (A \ B)c = (A \ Bc) [ (Ac \ B) [ (Ac \ Bc). We now prove the
�rst part. Let A 2 C and B 2 C. Then A[B = A[ (B \Ac) = A[ (B \ fB1 [
B2 [ ::: [ Bngg) where B0is are disjoint, are contained in Ac and belong to C.
Thus A[B is the union of the disjoint sets A;B \B1; :::; B \Bn. Assume that
union of any k sets in C is a disjoint union of sets from C for 1 � k � N . Let
A1; A2; ::; AN+! 2 C. Consider A1[A2[ :::[AN+1. By induction hypothesis we
can write A2[A3[:::[AN+1 as a disjoint union B1[B2[:::[Bm of sets from C.
Hence A1[A2[ :::[AN+1 = A1[B1[B2[ :::[Bm = A1[(B1nA1)[(B2nA1)[
::: [ (BmnA1). Each of the sets BinA1 = Bi \ Ac1; 1 � i � m is a �nite disjoint
union of members of C. It follows that A1 [ (B1nA1)[ (B2nA1)[ :::[ (BmnA1)
is a �nite disjoint union of members of C. The induction argument is now
complete. To show that the class of �nite unions of sets from C coincides with
the �eld generated by C we only have to show that this class is closed under
complementation. [For then this class would be a �eld containing C]. Consider

(A1[A2[ :::[AN )c = Ac1\Ac2\ :::\AcN =
N\
i=1

j(i)[
j=1

Bi;j with Bi;j 2 C for all i; j.
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We can write
N\
i=1

j(i)[
j=1

Bi;j as
[

j1;j2;:::;jN

(B1;ji \B1;j2 \ :::\B1;jN ). This completes

the proof.

Problem 303

Let T : L1(
;F ; P ) ! L1(
;F ; P ) be linear and Tf � 0 whenever f � 0.
Show that T is continuous.

[ If not there exists ffng � L1(
;F ; P ) such that kfnk = 1 and kTfnk > 2n.

Let f =
1X
n=1

jfnj
2n . Clearly f 2 L1(
;F ; P ). Actually we can take f 0ns to be

non-negative: T maps real functions to real functions and if kTfk � C kfk for
positive f then this holds for real f , hence complex f with a possibly larger

constant C. In this case Tf � T

NX
n=1

fn
2n >

NX
n=1

1 = N for each N ].

Remarks: note that under above hypothesis T is also a bounded opera-
tor on L1. There is a converse: if T maps L1(
;F ; P ) into itself bound-
edly and if it maps L1(
;F ; P ) into itself boundedly then there is a map
S : L1(
;F ; P )! L1(
;F ; P ) with Sf � 0 whenever f � 0 and jTnf j � Sn jf j
for each positive integer n. [ Ref.: Lemma 4, page 672 of Dunford and Schwartz
"Linear Operators" Part I].

Problem 304

Let X be a compact metric space. If every pointwise convergent sequence in
C(X) converges uniformly show that X is a �nite set.

There exists a sequence fxng of distinct points converging to a point x.
For each n there exists �n 2 (0; 1n ) such that xj =2 B(xn; �n) for all j 6= n
and x =2 B(xn; �n). [ If �nis small enough there is an open ball B(x; r) which is
disjoint from B(xn; �n) and this ball contains xj for all j su¢ ciently large. Hence
xj =2 B(xn; �n) for all j su¢ ciently large. Now reduce �n further to make sure
that no xj ; j 6= n is in B(xn; �n)]. Let fn : X ! [0; 1] be a continuous function
which is 1 on B(xn; �n=2) and 0 on XnB(xn; �n). Note that fn(xn) = 1. We
claim that fn(y)! 0 as n!1 for every y. If y 2 B(xn; �n) for in�nitely many
n then y = limxn = x and so y =2 B(xn; �n) for any n; a contradiction! Thus
y =2 B(xn; �n) for n su¢ ciently large which implies fn(y) = 0 for n su¢ ciently
large. Hence fn ! 0 pointwise. If fn ! 0 uniformly then 1 = fn(xn) ! 0 a
contradiction.

Problem 305
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Let X be a normed linear space and T; S be commuting bounded operators
on X. Show that TS is invertible if and only if both T and S are invertible. [
Invertible operators are those which are bijective and have a bounded inverse].

If X is complete then one could use the fact that if TS is bijective then
T and S are both bijective ( because TS = ST ) and boundedness of inverse
operators follows by open mapping theorem. The problem is, in fact, purely
algebraic! Let A be an algebra with a unit element e over R or C and x; y 2 A
with xy = yx =(z;say). If x and y are invertible it is trivial to check that xy
is invertible. Suppose v = z�1 exists. Then vy = yv as seen by multiplying
on both sides of the equation (xy)y = y(xy) by v. Now (vy)x = vz = e and
x(yv) = zv = e proving that vy = yv is an inverse of x. Similarly vx = xv is an
inverse of y.

Problem 306
[ Vey few connected subsets implies lots of clopen sets!]
Let X be a locally compact Hausdor¤ space. Suppose connected subsets of

X are all singleton sets. Show that there is a basis consisting of clopen sets.
[clopen means closed and open].

Let a 2 X and U be a neighbourhood of a. There exists an open set V such

that a 2 V �
�
V � U and

�
V is compact. We have to show that there is a clopen

set containing a and contained in V .

Fact 1: suppose C is closed, C �
�
V ; b 2

�
V and, for every x 2 C there exists

a clopen set W in
�
V with x 2W but b =2W .

Then there is a clopen set S of
�
V such that b 2

�
V nS and C � S.

To prove this fact let x 2 C and pick a clopen set Wx with x 2 Wx but

b =2 Wx. By compactness of
�
V (which implies compactness of C) we have C �

Wx1 [Wx2 [ :::[Wxn for some fx1; x2; :::; xng. Take S =Wx1 [Wx2 [ :::[Wxn .

Fact 2: let M = fx 2
�
V : W clopen on

�
V and x 2 W imply a 2 Wg. Then

M is connected.
Assuming Fact 2 we complete the proof as follows: by hypothesisM must be

a singleton; since a 2 M it follows that M = fag. Hence x 2
�
V ; x 6= a implies

there exists a clopen set W containing x which does not contain a. We now

apply Fact 1 with C =
�
V nV and b = a. It follows that there is a clopen set S

such that a 2
�
V nS and C � S �

�
V : Now T =

�
V nS is a clopen set in

�
V ; a 2 T

and T �
�
V nC � V . Since T is closed in

�
V it is closed in X. Since T is open

in
�
V there is an open set U0 in X such that T =

�
V \ U0. Since T � V we get

T = V \ U0. Hence T is also open in X.
It remains to prove Fact 2. Suppose, if possible, M = A[B where A and B

are disjoint non-empty closed subsets of M . Without loss of generality assume
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that a 2 A. It is obvious from the de�nition of M that
�
V nM is open in

�
V and

hence M is closed in
�
V . Thus M is closed in X and so are A and B. Since

�
V

is normal there exist disjoint open sets U1; U2 in
�
V with A � U1; B � U2. We

claim that
�
U1 \B = ;. [ All closures are in X]. Just note that the closure of U1

in
�
V is same as

�
U1 \

�
V and that the closure of U1 in

�
V is contained in U c2 \

�
V

( because the latter is closed in
�
V and contains U1). Thus

�
U1 \

�
V � U c2 \

�
V

and hence
�
U1 \ B =

�
U1 \ B \

�
V � U c2 \

�
V \ B = ; because B � U2. Let

us denote U1 by W so that W is open in
�
V ,

�
W \ B = ; and A � W . Now

(
�
WnW )\M = ? because (

�
WnW )\A = ? and (

�
WnW )\B = ?. Hence, any

point z of (
�
WnW ) \

�
V belongs to a clopen set Sz in

�
V which does not contain

a. We now apply Fact 1 to the closed set (
�
WnW )\

�
V of

�
V . [ This set is closed

in
�
V because W is open in

�
V ]. Thus there exists a clopen set T in

�
V such that

a 2
�
V nT and (

�
WnW ) \

�
V � T . Now consider H = (WnT ) \

�
V . This set is

open in
�
V . Since (

�
WnW ) \

�
V � T we have H = (

�
WnT ) \

�
V . Hence H is

also closed in
�
V . Note that a 2 H and H \ B = ;. Finally we note that

�
V nH

is a clopen subset of
�
V which does not contain a but contains all points of B.

Since B is non-empty there is a point u in B � M which has a clopen (in
�
V )

neighbourhood (viz.
�
V nH) not containing a. This contradicts the de�nition of

M: The proof is now complete.

Problem 307

Prove that there is an enumeration fq1; q2; :::g ofQ\(0; 1) such that
1X
n=1

q1q2:::qn =

1.

Let bn = n
n+1 and fa1; a2; :::g is an enumeration of Q\ (0; 1)nfb1; b2; :::g. We

take fq1; q2; :::g to be fa1; b1; b2; :::; bn1 ; a2; bn1+1; bn1+2; :::; bn2; a3; bn2+1; ::::g for

a suitable sequence fnkg of positive integers tending to1. Consider
n1+1X
n=1

q1q2:::qn =

a1+a1b1+a1b1b2+ :::+a1b1b2:::bn1 = a1[1+
1
2 +

1
3 + :::+

1
n1+1

]. We can choose
n1 such that this last expression exceeds 1. We can then choose n2 such that

n2X
n=n1+1

q1q2:::qn > 2 and so on. In general we can make
nj+1X

n=nj+1

q1q2:::qn > j.

Problem 308
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Show that there is an enumeration frng of rationals such that R 6=
[
n

(rn �

1
n ; rn +

1
n ).

Enumerate non-square positive integers as an increasing sequence fm1;m2; :::g.
Let �n be a rational number such that j�n � 1j < 1

mn
with �0ns distinct and enu-

merate Qnf�1; �2; :::g as fs1; s2; :::g. Let rn2 = sn and frn : n non-square} be
an the sequence �1; �2; :::. Clearly, frng is an enumeration of all rationals. Con-
sider (rn� 1

n ; rn+
1
n ) where n is non-square. By de�nition rn = �kn for some kn

and kn � n. If jx� rnj < 1=n then jx� 1j < 1
n +

1
mkn

� 2
n � 2. It follows that

the interval (rn � 1
n ; rn +

1
n ) is contained in [�1; 3] whenever n is not a square.

When n = m2 this interval is (sm� 1
m2 ; sm+

1
m2 ) and Lebesgue measure of the

union of all these intervals does not exceed
X
m

2
m2 . It follows that the measure

of
[
n

(rn � 1
n ; rn +

1
n ) is �nite.

Problem 309
Let (X; d) be a separable metric space and f a real valued function on X.

Show that the set of points x such that lim
y!x

f(y) exists and is di¤erent from f(x)

is at most countable.

We may suppose that lim
y!x

f(y) exists for every x 2 X. Let A = fx 2

X : f(x) < lim
y!x

f(y)g. Then A =
[
p;q2Q
p<q

Ap;q where Ap;q = fx 2 X : f(x) <

p < q < lim
y!x

f(y)g. If we show that Ap;q is atmost countable it would follow

that A is at most countable. Changing f to �f we can conclude that fx 2
X : f(x) > lim

y!x
f(y)g is at most countable. Thus, outside a countable set we

have lim
y!x

f(y) � f(x) � lim
y!x

f(y) which means lim
y!x

f(y) = f(x). Now �x p; q

and let x 2 Ap;q. If every ball B(x; r) contains a point y of Ap;q then there
exist points yn in B(x; 1n ) \ Ap;q; n = 1; 2; :::. But then f(yn) < p for all n so
lim
y!x

f(y) � p < q a contradiction. Thus no point of Ap;q is a limit point of

Ap;q and this implies every sigleton set in Ap;q is open in the subspace topology.
Since Ap;q is separable it must be at most countable.

Problem 310

a) Let f : R! R satisfy the equations f(x+ y) = f(x) + f(y) and f(xy) =
f(x)f(y) for all x; y 2 R. Show that either f(x) = x for all x or f(x) = 0 for
all x.
b) Let g : C ! C satisfy the equations g(z1 + z2) = g(z1) + g(z2) and

g(z1z2) = g(z1)g(z2) for all z1; z2 2 C. If g is also continuous show that g(z) = 0
for all z or g(z) = z for all z or g(z) =

�
z for all z:

c) Determine all multiplicative measurable maps f : R! R.
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[See also Problem 311 below].

Since f(rx) = rf(x) and f(rx) = f(r)f(x) for r rational we get f(r) = r
for r rational. Let a < b and c =

p
b� a. Then f(b) � f(a) = f(b � a) =

f(c2) = [f(c)]2 � 0 so f is increasing. If rn; sn(n = 1; 2; :::) are rationals
with rn " x and sn # x then rn = f(rn) � f(x) � f(sn) = sn for all n so
x � f(x) � x. This proves a). Now g(rz) = rg(z) and g(rz) = g(r)g(z) for
r rational so g(r) = r for all rational r unless g � 0. By continuity g(x) = x
for all real x. Now �1 = g(�1) = [g(i)]2 so g(i) = �i. If g(i) = i then
g(a+ ib) = g(a)+g(i)g(b) = a+ ib for all a; b 2 R. On the other hand g(i) = �i
gives g(a + ib) = g(a) + g(i)g(b) = a � ib for all a; b 2 R. This �nishes b).
Now let f : R ! R be multiplicative. We �rst observe that f2(0) = f(0)
and f2(1) = f(1) so f(0) and f(1) both belong to f0; 1g. If f(1) = 0 then
f(x) = f(x)f(1) = 0 for all x. Now let f(1) = 0. If f(x) = 0 for some
x 6= 0 then f(y) = f(x)f( yx ) = 0 for all y so assume f(x) 6= 0 if x 6= 0. Let
g(x) = log jf(ex)j. Then g is additive and measurable so g(x) = cx for some
constant c. Thus jf(ex)j = ecx and jf(y)j = yc for all y > 0. If x 2 R then
f(�ex) = f(�1)f(ex) so jf(�ex)j = jf(�1)j ecx which gives jf(�y)j = dyc if
y > 0. Since jf(1)j = jf(�1)j jf(�1)j we get 1c = d1cd1c so d2 = 1. Obviously
d is positive so d = 1. Thus jf(y)j = jyjc for all y 2 R. [ jf(0)j = jf(0)j jf(2)j =
jf(0)j 2c so f(0) = 0]. Note that f(x2) = [f(x)]2 > 0 for x 6= 0 ( because
f(x) 6= 0 if x 6= 0]: Thus f(y) > 0 for y > 0. If f(�1) > 0 then f(y) > 0 for
all y < 0 and we get f(y) = jycj for every real number y. Otherwise, f(�1) < 0
because f(x) 6= 0 if x 6= 0 and we get f(�y) = f(�1)f(y) < 0 for all y > 0.
In this case we get f(y) = jyjc or � jyjc according as y � 0 or < 0. The two
functions we have arrived at are indeed multiplicative measurable maps.
Remark: if y ! jyjc is additive then 2c = 1c + 1c so c = 1 which is a

contradiction since y ! jyj is not additive. If y ! jyjc sgn(y) is additive then
c = 1 again so the only additive and multiplicative map is the identity map.
Thus c) contains a).

Problem 311
Find all continuous maps f : R! S1 such that f(x+ y) = f(x)f(y) for all

x; y: Do the same when S1 is replaced by C.
First part: note that f(0) = 1. Fix a positive integer N . By a standard

argument in Complex Analysis there exists a unique continuous function hN :
[�N;N ] ! R such that f(x) = eihN (x) (jxj � N) and hN (0) = 1. It follows
easily that h0Ns de�ne a continuous function h : R ! R such that h(0) = 0
and f(x) = eih(x) for all real numbers x. Note that ei[h(a+b)�h(a)�h(b)] = 1 so
h(a+ b)�h(a)�h(b) = 2n� for some integer n. By continuity of h we conclude
that n does not depend on a and b. Since h(0) = 0 we conlude that h is additive.
Since h is additive and continuous there is a real number a such that h(x) =

ax for all x. Hence f(x) = eiax. Now consider the second part. Since f(0) =
f2(0) either f(0) = 0 or f(0) = 1. If f(x) = 0 for some x then f(x + y) =
f(x)f(y) = 0 for all y which gives f � 0. If this is not the case then f(0) = 1
and f never vanishes. Let g(x) = f(x)

jf(x)j . The �rst part can be applied to g and
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we get f(x) = eiax jf(x)j. Also log jf(x)j is an additive continuous function on
R; so jf(x)j = ebx for some real number b. We now have f(x) = e(b+ia)x.

Problem 312

Find a sequence of continuous functions ffng from R into R such that the
sequence converges pointwise to 0 on R but it does not converge uniformly on
any (non-degenerate) interval.

Let frng be an enumeration of rationals, �n(x) = nx for 0 � x � 1
n ; �n(x) =

n( 2n � x) for 1
n � x � 2

n and �n(x) = 0 everywhere else. Let fn(x) =
1X
j=1

�n(x�rj)
2j . The fact that �n(x) ! 0 as n ! 1 for every real number x

implies that ffng ! 0 pointwise. Now let a < b. Pick a rational rj in (a; b).

If n is su¢ ciently large then rj + 1
n 2 (a; b) and fn(rj +

1
n ) �

�n(
1
n )

2j = 1
2j . It

follows that ffng does not converge uniformly on (a; b).

Problem 313

Let f 2 C[0; 1]: Suppose x1 < x2 < ::: < xn and y1; y2; :::; yn 2 R with no
xi belonging to [0; 1]. Given � > 0 show that there is a polynomial p such that
supfjf(x)� p(x)j : 0 � x � 1g < � and f(xi) = yi; 1 � i � n.

There is a polynomial � such that �(xi) = �yi for 1 � i � n. [ For

example we can take �(x) =
nX
i=1

ci
Y
j 6=i
(x � xj) where ci = � yiY

j 6=i

(xi�xj)
pro-

vided n 6= 1. For n = 1 we can take �(x) = �y1 + (x � x1)]. Now con-
sider f(x)+�(x)

nY
j=1

(x�xj)

. This function is continuous on [0; 1] and hence there is a

polynomial p0 such that

���������
f(x)+�(x)
nY
j=1

(x�xj)

� p0(x)

��������� < � for 0 � x � 1 where � > 0

is chosen such that � supf
nY
j=1

[1 + jxj j : 0 � x � 1g < �. It follows that������f(x) + �(x)�
nY
j=1

(x� xj)p0(x)

������ < � supf

������
nY
j=1

(x� xj)

������ : 0 � x � 1g � � supf
nY
j=1

[1+

jxj j : 0 � x � 1g < �.
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Now take p(x) =
nY
j=1

(x� xj)p0(x)� �(x).

Problem 314

Let A be a bounded Borel set set of positive measure . Find all real numbers
x such that x+A almost contains A in the sense m(An(x+A)) = 0.

Let A � [a; b]. Ifm(An(x+A)) = 0 andm(An(y+A)) = 0 thenm(An(x+y+
A)) = 0. Hence m(An(nx+A)) = 0 has this property for all n 2 N. If x > 0 and
nx > b�a then A\(nx+A) � [a; b]\(b;1) = ; som(An(nx+A)) = m(A) > 0.
This shows that x � 0. Similarly x � 0. Thus x must be 0.
Remark: if 0 < m(A) < 1 then fx : m(An(x + A)) = 0g is a subgroup of

(R;+).

The next three problems are from Berkely Problem Book.
Problem 315

Let f : [0;1)! [0;1) be monotonically increasing. Suppose f(a) > a and
f(b) < b for some a < b. Show that f has a �xed point.
Replacing f by f(x+ a)� a and b by b� a we can reduce the proof to the

case a = 0. Thus f(0) > 0 and f(b) < b. We may rede�ne f to be the constant
f(b) on (b;1). In this case f(x) < x for all x � b. Let A = fx : f(x) � xg.
Note that 0 2 A and A � [0; b). Let � = supA. Note that � > 0. If � > 0 we
can �nd x 2 A such that x � � < x + �. We have � � f(�) � � � f(x) ( by
monotonicity) so � � f(�) � � � f(x) < x + � � f(x). Since x 2 A this gives
�� f(�) < �. Since � is arbitratry we get � � f(�). To complete the proof we
have to show that equality holds here. Suppose � < f(�) : Let � = f(�) � �.
There exists y 2 A with y � � < y+�. We then get y � � < y+� = f(�)��+y
and hence f(�)� � + y � f(�) � f(f(�)� � + y) again by monotonicity. We
have proved that z � f(z) where z = f(�)� �+ y. Since f(t) < t for all t � b
we must have z < b. Since � = supA and z 2 A by de�nition of A we get z � �
which says f(�)� �+ y � � or � + y � �. This is a contradiction.

Problem 316

Let f; f1; f2; ::: : R ! R. Suppose fn(xn) ! f(x) whenever xn ! x. Show
that f is continuous.
Remark: f 0ns need not be continuous; the proof below works if R is replaced

by any metric space.

If not we have xn ! x and jf(xn)� f(x)j � � > 0 for all n. We have
fm(xn)! f(xn) asm!1 and so there existsmn such that jfmn

(xn)� f(xn)j <
�=2. We may suppose m1 < m2 < :::. Also fmn

(xn) ! f(x). [ Indeed
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yk ! y implies fnj (yj) ! f(y) for nj " 1 as seen by considering a se-
quence of the type y1; y1; :::; y1; y2; y2; :::; y2; :::]. Now � � jf(xn)� f(x)j �
jfmn

(xn)� f(xn)j+jfmn
(xn)� f(x)j < �=2+jfmn

(xn)� f(x)j. Letting n!1
we get � � �=2; a contradiction.

Problem 317

Let f : [0; 1]! R be a continuous function such that f(x) � 1
2�

x+�Z
x��

f(t)dt or

all � > 0. Show that f is convex.

Let a < b and g(x) = f(x)� [(x� a)f(b) + (b� x)f(a)]=(b� a). Easy to see

that g is continuous and g(x) � 1
2�

x+�Z
x��

g(t)dt or all � > 0. Clearly if g attains its

maximum at a point x 2 (a; b) then g is a constant. Thus g attains its maximum
at one of the end points. Since g(a) = g(b) = 0 we get g(x) � 0 for all x which
means f(x) � [(x�a)f(b)+(b�x)f(a)]=(b�a) we have proved that f is convex.

Problem 318

Let f 2 L1(a; b) where 0 < a < b < 2�. If

bZ
a

f(x)einxdx = 0 for all n � 0

show that f = 0 a.e..

This is an easy consequence of some basic theorems in Hp spaces. Extend
f to [0; 2�] by making it 0 outside (a; b). f is the boundary function of an H1

function on the unit disc and it vanishes on a set of positive measure ( because
b� a < 2�). This implies that f = 0 almost everywhere.

Remark: if � is a complex Borel measure on (a; b) with
Z

(a;b)

einxd�(x) = 0 for

all n � 0 then � = 0. This follows from the fact that � is absolutely continuous
(by F and M Riesz Theorem).

Problem 319
Let X be a normed linear space, M as subpace of �nite co-dimension. If M

is complete so is X:

There exist y1; y2; ::; yN such that any point of X is uniquely expressible

as m +
NX
i=1

ciyi with m 2 M and c0is belonging to the scalar �eld. Let fmn +
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NX
i=1

ci;nyig be a Cauchy sequence in X. Let an =
NX
i=1

jci;nj. If fang is unbounded

then f 1
an
(mn +

NX
i=1

ci;nyi)g ! 0 through a subsequence and there is a further

subsequence along which 1
an
(c1;n; c2;n; :::; cN;n) converges to a unit vector in RN .

This leads to an equation of the type m+
NX
i=1

ciyi = 0 where (c1; c2; :::; cN ) is a

unit vector. This is a contradiction, so fang is bounded. It follows that fmng is

Cauchy along a subsequence ( because f
NX
i=1

ci;nyig is convergent, hence Cauchy,

along a subsequence). If (along a subsequence) mn ! m 2 M then it follows

that fmn +
NX
i=1

ci;nyig converes along a subsequence, hence along the whole

sequence.

Problem 320

Let � > 0. There exists a positive integer N such that c 2 S1 and c; c2; ::; cN
have real parts strictly positive imply jc� 1j < �.

Suppose this is false for some � > 0. Then there exists a sequence fcng in
S1 such that cn; c2n; ::; c

n
n have real parts strictly positive but jcn � 1j � �. If

c is a limit point of this sequence then Re ck � 0 for every positive integer k
and jc� 1j � �. If c is not a root of unity then fc; c2; :::g is dense in S1 and
hence Re ckj ! Re(�1) = �1 for some kj " 1 which is a contradiction. Hence
there is a least N � 2 such that cN = 1. The numbers c; c2; :::; cN are distinct
and they are all N � th roots of 1. Hence every N � th root of 1 has positive
real part. This is a contradiction because Re e2�i

N==2
N < 0 if N is even and Re

e2�i
(N�1)==2

N < 0 if N is odd. [ Note that � � �=N 2 (�=2; �)].

Problem 321
Let X be a topological vector space over R and  : X ! S1 be a continuous

map such that (x+ y) = (x)(y) for all x; y. Show that there exists x� 2 X�

such that (x) = eix
�(x) for all x:

Remark: X� can be f0g; in this case the group (X;+) has no continuous
character other than 1. [ Let X be the space of all bounded Borel measurable

functions on [0; 1] with the metric d(f; g) =
Z

jf�gj
1+jf�gj . Then X is a topo-

logical vector space. (fn ! 0 in X i¤ /f ! 0 in measure, w.r.t. Lebesgue
measure). We claim that X� = f0g. Let � 2 X� and � > 0. There exists

r > 0 such that
Z

jf j
1+jf j < r implies j�(f)j < �. Let f 2 X be arbitrary and
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fi = f2NI( i�1
2N

; i
2N )

; 1 � i � 2N . Then
Z

jfij
1+jfij =

Z i

2N

i�1
2N

jf j2N
1+jf j2N �

Z i

2N

i�1
2N

1 < r

whenever 1
2N

< r. Hence j�(fi)j < � for each i. Since 1
2N

2NX
i=1

fi = f we get

j�(f)j � maxfj�(fi)j : 1 � i � 2Ng � �. Since � is arbitrary we get � � 0].

There is open set U containing 0 such that U is balanced (i.e. tx 2 U
whenever x 2 U and jtj � 1) and j(x)� 1j < 1 for all x 2 U . Note that
(x) 6= �1 if x 2 U . Let f : U ! R be de�ned by (x) = eif(x) and �� <
f(x) < �. f(x) is nothing but the principle logarithm of (x). If x 2 X
there exists t > 0 such that 1

tx 2 U . Let f(x) = tf( 1tx) 8x 2 X. To see
that this is well-de�ned suppose we also have 1

sx 2 U where s > 0. Consider
fax : a 2 Rg. This subgroup is homeomorphic to (R;+). The restriction of  to
this subgroup is a determined by a character of (R;+) and hence (ax) = eica for
some real number c. Now ( 1tx) = eif(

1
t x) and so ec=t = eif(

1
t x). It follows that

if( 1tx) = ic=t+2n�i for some integer n. If n 6= 0 then jic=tj =
��if( 1tx)� 2n�i�� �

2 jnj� � � � � so �t
c (

1
tx) 2 U ( because U is balanced). Hence

��(�c x)� 1�� < 1
which means

��ei� � 1�� < 1 which is a contradiction. Hence if( 1tx) = ic=t.
Similarly if( 1sx) = ic=s. It follows that tf( 1tx) = sf( 1sx) = c. We have proved
that f is well-de�ned on X. If x 2 U then we can take t = 1 in the de�nition,
so f de�ned on X is indeed an extension of f on U . Note that the principle
logarithm is continuous on S1nf�1g so f is continuous on U . If we show that
f is linear we can conclude that it is continuous on X (because it is continuos
at 0). Suppose x 6= 0 and a 2 Rnf0g. There exists t > 0 such that 1

tx 2 U .
Since 1

tjaj (ax) 2 U we get f(ax) = t jaj f( 1
tjaj (ax)) and f(x) = tf( 1tx). If a > 0

this gives f(ax) = af(x). Noting that (�x) = [(x)]� for x 2 U we see
that eif(�x) = e�if(x) and if(�x) = 2�im � if(x) for some inreger m. Since
jf(�x) + f(x)j < 2� we get m = 0. It follows that f(�x) = �f(x) (for all
x 2 U). From this it follows easily that the equation holds for all x 2 X. Hence
f(ax) = af(x) whenever a and x are non-zero. Since f(�0) = �f(0) we get
f(0) = 0 and so f(ax) = af(x) for all a 2 R for all x 2 X: Finally we prove that
f is additive: let V be a symmetric neighbourhood of 0 such that jf(x)j < �

3 for
x 2 V and V +V � U . For x; y 2 V we have x+y 2 U so (x+y) = eif(x+y) and
(x)(y) = eif(x)eif(y). Hence f(x+ y)� f(x)� f(y) = 2n� for some integer n.
However jf(x+ y)� f(x)� f(y)j < � so n = 0. Hence f(x+y) = f(x)+f(y) for
all x; y 2 V . If x; y 2 X are arbitrary choose t > 0 such that 1tx 2 V;

1
t y 2 V and

1
t (x+y) 2 V . We get f(x+y) = tf( 1t (x+y)) = tf( 1tx)+ tf(

1
t y) = f(x)+f(y):

Problem 322

Let X be a locally compact Hausdor¤ space, Y a Hausdor¤ space and f :
X ! Y a continuous open surjective map. If K is compact in Y there exists C
compact in X such that f(C) = K:
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For each x 2 f�1(K) there exists an open set Ux such that
�
Ux is compact

and x 2 Ux. K is covered by the open sets f(Ux); x 2 f�1(K). Let ff(Uxi) :

1 � i � ng be a �nite subcover. Take C = f�1(K) \
�
Ux1 \

�
Ux2 \ ::: \

�
Uxn :

Problem 323 [ Manjunath Krishnapur]

Suppose fFng is an increasing sequence of sigma algebras on 
 and fGng is
an decreasing sequence of sigma algebras on 
 such that

\
n

Gn is trivial with

respect to a given probability measure P on a sigma algebra F which contains
each Fn. [ A sigma algebra is trivial w.r.t. a probability measure P if every set
in it has probability 0 or 1]. Let X be a random variable on (
;F ; P ) which
is measurable w.r.t. �fFn;Gng ( the sigma algebra generated by Fn [ Gn) for
each n. Does it follow that X is measurable w.r.t. the completion of the sigma
algebra generated by all the F 0ns?

No! Let fYng be i.i.d. non-constant random variables, Fn = �fY2; Y3; :::; Yng;Gn =
�fSn;Sn+1; :::g where Sn = Y1 + Y2 + ::: + Yn. Let X = Y1. Since X =
Sn � fY2 + Y3 + ::: + Yng it follows that X is measurable w.r.t. �fFn;Gng for
each n. By Kolomogorov�s 0 � 1 Law

\
n

Gn is trivial. However sigma algebra

generated by all the F 0ns is �fY2; Y3; :::g and X is independent of this and hence
not measurable w.r.t. this sigma �eld (or its completion) since it is assumed to
be non-constant.

Remark: there is a corresponding question about closed subspaces of a
HIlbert space: suppose fMng is an increasing sequence of closed subspaces of
a Hilbert space H and fNng a decreasing sequence of closed subspaces of H

with
1\
n=1

Nn = f0g. Suppose x 2 Mn + Nn for each n. Does it follow that

x belongs to the closed subspace M generated by
1[
n=1

Mn? The answer again

is no: let feng be an orthonormal basis for H;Mn = [spanfe2; e3; :::; eng]�
and Nn = [spanfsn; sn+1; :::g]� where sn = e1 + e2 + ::: + en. Then e1 2
Mn + Nn for each n. Since e1 is orthogonal to each Mn it does not belong to

M . Suppose y 2
1\
n=1

Nn. Notice that Nn = fasn +
1X

j=n+1

ajej : a 2 C; ajC for

all j and
1X

j=n+1

jaj j2 <1g. (If H is a real Hilbert space we can replace C by R).

Note also that z 2 Nn )< z; e1 >=< z; e2 >= ::: =< z; en >. It follows that
< y; ej > is independent of j and hence y = 0.
Problem 324
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An in�nitely divisible characteristic function (i.d.c.f) may be the product of
two characteristic functions not both of which are in�nitely divisible.
Next problem gives a stronger result.

Claim: if an � 0 and
X
n

an < 1 then e

X
n

an(e
int�1)

is an i.d.c.f. In-

deed e

X
n

an(e
int�1)

= e

Z
(ettx�1)d�(x)

where � =
X
n

an�n (which � is a Levy

mesure). Now let X take the values 0 and 1 with probabilities 2=3 and 1=3
so that its characteristic function is given by �(t) = 2+eit

3 . Let Log denote
the principle branch of logarithm on fRe z > 0g. Then Log( 2+z3 ) is analytic
in fjzj < 2g (because Re( 2+z3 ) > 0 there) so we have a power series expan-

sion Log( 2+z3 ) =
X
n

bnz
n. We can compute the coe¢ cients by taking z in

(0; 1). Since log(2+t3 ) = log
2
3 + log(1 + t=2) = log 23 +

X
n

(�1)n+1(t=2)n
n we get

bn =
(�1)n+1
n2n for n � 1. Now �(t) = eLog(�(t)) = e

X
n

bne
int

= e

X
n

bn(e
int�1)

.

[ Note that
X
n

bn = Log( 2+13 ) = 0]. If an = b+n and cn = a�n it follows

that e

X
n

an(e
int�1)

and e

X
n

cn(e
int�1)

are ini�nitely divisible (by the claim) and

e

X
n

cn(e
int�1)

�(t) = e

X
n

an(e
int�1)

which exhibits an ini�nitely divisible charac-
teristic function as the product of two characteristic functions one of which, viz.
�, is not ini�nitely divisible because no non-constant bounded random variable
is ini�nitely divisible.

Problem 325

Product of two characteristic functions, neither of which is ini�nitely divisi-
ble can be ini�nitely divisible.

LetX take values�1; 0; 1; 2; ::: with probabilities 1=6; (5=12); (5=12)(1=2); (5=12)(1=22); :::.

Let �(t) = EeitX . Then �(t) = e�it=6+(5=12)
1X
n=0

eint

2n = e�it=6+(5=12) 1
1�(1=2)eit =

1
3
2+e�it

2�eit . We would like to express �(t) in the form e
�

1X
n=0

(cos(nt)�1)
. For this

consider the function 2 + z in 1
2 < jzj < 2. Since Re(2 + z) > 0 in this

region Log(2 + z) is well de�ned. [ Log stands for the principle branch of
logarithm; note that Log = log on (0;1)]. We have a Laurent expansion

Log(2 + z) =
1X

n=�1
anz

n for 1
2 < jzj < 2. The coe¢ cients an can be deter-
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mined from log(2 + t) =
1X

n=�1
ant

n for 12 < t < 2. We have log(2 + t) = log 2 +

1X
n=1

1
n (

t
2 )
n(�1)n+1. Hence an = 0 for n < 0; a0 = log 2; an = 1

n (
1
2 )
n(�1)n+1; n =

1; 2; :::. Now �(t) = 1
3
2+e�it

2�eit = 1
3e

1X
n=0

ane
�int

e
�

1X
n=0

ane
int(�1)n

= 1
3e

1X
n=�1

bne
int

where bn = 1
n (

1
2 )
n for n = 1; 2; :::; b0 = 0 and b�n = 1

n (
1
2 )
n(�1)n+1; n =

1; 2; :::. Now j�(t)j2 = 1
9e

2

1X
n=�1

bn cos(nt)

. Since
1X

n=�1
bn = log 3 we may write

j�(t)j2 = e

2

1X
n=�1

bn(cos(nt)�1)

= e

2

1X
n=�1

bn(cos(nt)�1)

= e
�

Z
(1�cos tx)d�(x)

where

� =
1X
n=1

2(bn + b�n)�n. Clearly,
1X
n=1

jbnj < 1 so � is a �nite mesure, hence a

Levy measure. It follows that j�j2 is an ini�nitely divisible characteristic func-
tion. � itself is not an ini�nitely divisible characteristic function. Indeed if U
and V are i.i.d. and U + V has the distribution has the same distribution as
X then U and V are discrete random variable. If PfU = ng > 0 for some
n < 0 then PfU + V = 2ng � PfU = ngPfV = ng = P 2fU = ng > 0 but
PfX = jg = 0 for j < �1. It follows that U and V are non-negative random
variable which implies that X is non-negative, a contradiction.

Problem 326

Prove that there is a bounded set E in R of measure 0 such that E + E is
not measurable.

Let faigi2I be a maximal linearly independent subset of the Cantor set C
over the �eld Q. Since C + C = [0; 2] the set faigi2I is also a Hamel basis for
R over Q. Let E1 = A + A where A = frai : i 2 I; r 2 Q; 0 � r � 1g. Clearly
A has measure 0. Since E1 + E1 has no interior because every point in it is
a linear combination of four elements of faigi2I . ( If every point of (a; b) is
a linear combination of four elements of faigi2I then, for any real number x
there exists n such that a+b2 + x

n 2 (a; b) which show that x can be written as a
linear combination of 8 elements of faig. However a sum of 9 elements of faig
cannot be expressed in this form]. Hence E1 has measure 0 if it is measurable.
If it is not measurable we can take E = A. If E1 is measurable we de�ne fEng
by En+1 = En + En; n � 1. If the process does not stop ( in the sense we

get in�ntely many measurable sets fEng) then [0; 1] �
1[
n=1

En, a contradiction

since some En must have positive measure, but En + En does not contain any
interval.
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Problem 327

If f : R ! R is measurable, g(x) = supfjf(x+ y)� f(x)j : y 2 Rg; h(x) =
supfjf(x+ y)� f(x� y)j : y 2 Rg then g is measurable, but h need not be:

Proof: supfjf(x+ y)� f(x)j : y 2 Rg = maxfsupff(x + y) � f(x) : y 2
Rg;� infff(x+ y)� f(x) : y 2 Rgg
= maxfsupff(x + y) : y 2 Rg � f(x);� infff(x + y) : y 2 Rg + f(x)g =

maxfa� f(x); f(x)� bg where a = supff(y) : y 2 Rg and b = � infff(y) : y 2
Rg. [ If a =1 or b =1 then g � 1]. Hence g is measurable.
Let E be a subset of [0; 1] of measure 0 such that E +E is not measurable.

Let f(x) = IE � IE+2. Then h = IF where F = 1
2 (E + E) + 1. Hence h is not

measurable.

Problem 328

Given a measurable function f : [0; 1] ! R there is a continuous function g
on [0; 1] such that g0 = f a.e.

This is a theorem of Lusin.
Lemma1
Let f 2 L1([0; 1]) and � > 0. There exists g 2 C[0; 1] such that g0 = f a.e.,

g(a) = 0 = g(b) and jg(x)j � � 8x.

Proof of Lemma 1: let h(x) =

xZ
0

f(t)dt. There is a partition f0 = a0; a1; a2; :::; an =

1g of [0; 1] such that the oscillation of h on [ai; ai+1] does not exceed � for any
i. There is continous monotonic function �i on [ai; ai+1] such that �i(ai) =
h(ai); �i(ai+1) = h(ai+1) and h0 = 0 a.e. [ �i non-decreasing or non-increasing
according as h(ai+1) > h(ai) or h(ai+1) � h(ai). This follows by applying a¢ ne
maps to a Cantor function]. De�ne � : [0; 1]! R by � = �i on [ai; ai+1]; 0 � i <
ng. Let g = h� �. Then g is continuous, g0 = h0 = f a.e., g(a) = 0 = g(b) [be-
cause �(a0) = h(a0); �(an) = h(an)] and jg(x)j = jh(x)� �(x)j = jh(x)� �i(x)j
on [ai; ai+1] and h(x)� �i(x) � h(x)� �i(ai)
= h(x)� h(ai) � �; �i(x)� h(x) � �i(ai+1)� h(x) = h(ai+1)� h(x) � � (if

�i is increasing; a similar argument works if it is decreasing).
Lemma 2
Let f 2 L1([0; 1]); � > 0 and C be a closed subset of [0; 1]. Then there

exists g 2 C[0; 1] such that g0 = f a.e. on [0; 1]nC; g = g0 = 0 on C and
jg(x+ h)j < � jhj whenever x 2 C and x+ h 2 [0; 1].
Let [0; 1]nC be the disjoint union of open intervals (an; bn) and choose

fan;mg � (an; bn) such that an;m # an as m # �1 and an;m " bn as m " 1.
Let �n;m = minf �(an;m�an)n+jmj ;

�(bn�an;m)
n+jmj g. By Lemma 1 there exists a continuous

function g on
[
(an; bn) such that g(an) = g(bn) = 0 for all n; jgj � �nm on

(an;m; an;m+1) and g0 = f a.e. on
[
(an; bn). De�ne g to be 0 on C. Claim:
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g0 = 0 on C. Suppose x 2 C and x < an < bn. Then, for any m and any

y 2 (an;m; an;m+1) we have
��� g(y)�g(x)y�x

��� � �nm
an;m�an �

�
n+jmj . It follows from this

that g0(x+) = 0. Similarly g0(x�) = 0. Hence g = g0 = 0 on C. It remains to
see that jg(x+ h)j < � jhj whenever x 2 C and x + h 2 [0; 1]. If h > 0 we just
have to take y = x+ h in the inequality

��� g(y)�g(x)y�x

��� � �nm
an;m�an �

�
n+jmj < �. A

similar argument holds for h < 0.
Proof of Lusin�s theorem: we construct closed sets Cn and continuous func-

tions gn (n � 0) such that the following hold:
1) each gn is a.e. di¤erentiable and h0n = f(x) 8x 2 Dn where Dn =

C0 [ C1 [ ::: [ Cn and hn = g0 + g1 + :::+ gn
2) gn � 0 on Dn�1
3) jgn(x+ h)j � jhj

2n if x 2 Dn�1 and x+ h 2 [0; 1]
4) m(Dc

n) <
1
n for n � 1.

Once this is done we show that h = limhn =
1X
n=0

gn satis�es h0 = f a.e.

We begin the construction of Cn and gn by taking g0 to be 0 and C0 to
be ;. Suppose we have constructed Cn and gn for 0 � n � N . Let EN be a
measurable subset of Dc

N such that m(Dc
NnEN ) < 1

N+1 and such that f and
h0N are bounded on EN . [ Clearly such a set exists: intersect Dc

N with jf j < R
and jh0N j < R for a su¢ ciently large R]. By Lemma 2 there exists gN+1 such
that
a) g0N+1 = f � h0N a.e.
b) gN+1 = g0N+1 = 0 on DN

c) jgN+1(x+ h)j � jhj
2N+1 if x 2 DN and x+ h 2 [0; 1]

Now we choose a closed set CN+1 � EN such that m(Dc
NnCN+1) < 1

N+1
and such that g0N+1 = f � h0N on CN+1.

The construction is over. Let C =
[
n

Cn so that m(C) = 1. [ m(Cc) �

m(Dc
N+1) = m(Dc

NnCN+1) < 1
N+1 for all N ]. We claim that h0(x) = f(x) if

x 2 C. Fix x. Note that there exists N such that x 2 Dn for all n � N . We have
h(x+t)�h(x)

t = hN (x+t)�hN (x)
t +

1X
j=N+1

gj(x+t)�gj(x)
t and

���h(x+t)�h(x)t � f(x)
��� �

���hN (x+t)�hN (x)t � f(x)
��� + 1X

j=N+1

jtj
2j . Since h

0
N (x) � f(x) = g0N+1(x) = 0 we are

done.

Problem 329

There exists a continuous function g on [0; 1] such that g0 exists a.e., g0(x) > 1
a.e. but g is not increasing on any interval.

Let Q = frng and f =
1X
j=1

(n+1)2I(rn� 1
n2
;rn+

1
n2
). Since

1X
j=1

m((rn� 1
n2 ; rn+
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1
n2 )) < 1 we have m(lim sup(rn � 1

n2 ; rn +
1
n2 )) = 0. Hence f is �nite valued

a.e. Clearly f is measurable. Hence, by Problem 328 above there exists a
continuous function g such that g0 = f a.e.. If g is increasing on [a; b] ( for

some a; b with a < b) then

bZ
a

g0(x)dx � g(b) � g(a) so

bZ
a

f(x)dx < 1. Hence

1X
j=1

(n + 1)2m((rn � 1
n2 ; rn +

1
n2 ) \ (a; b)) < 1. In particular (n + 1)2m((rn �

1
n2 ; rn+

1
n2 )\(a; b))! 0 as n!1. In turn, this implies (rn� 1

n2 ; rn+
1
n2 ) is not

contained in (a; b) for n su¢ ciently large. Let � = b�a
4 . If rn 2 (

a+b
2 ��; a+b2 +�)

then (rn � 1
n2 ; rn +

1
n2 ) � (

a+b
2 � � � 1

n2 ;
a+b
2 + � + 1

n2 )

� (a; b) provided 1
n2 <

b�a
4 . It follows that rn =2 (a+b2 � �; a+b2 + �) for n

su¢ clently large, which is absurd.

Problem 330
Let f : [0; 1] ! R be integrable and g : [0; 1] ! [0; 1] is continuously di¤er-

entiable. Is f(g(t))g0(t) necessarily integrable?

No. Let g(t) = cn( t � 1
n+1 )

2 on [ 1
n+1 ; xn]; g(t) = cn(t � 1

n )
2 on [xn; 1n ]n =

1; 2; ::: where xn is the mid-point of [ 1
n+1 ;

1
n ] and cn = 4(n + 1)2 and g(0) =

0. It is easy to see that g is continuously di¤erentiable, g(xn) = 1
n2 and g

is increasing on [ 1
n+1 ; xn]. Let f(x) = x�1=2 for x 6= 0; f(0) = 0. Then

xnZ
1=(n+1)

jf(g(t))g0(t)j dt =
xnZ

1=(n+1)

��� 2cnp
cn

��� dt = 2
p
cn[xn � 1

n+1 ] =
4(n+1)
2n(n+1) =

2
n .

Hence

1Z
0

jf(g(t))g0(t)j dt �
X
n

2
n =1.

Problem 331 [ Smital�s Lemma]

If A is a set of positive measure in R then (A+Q)c has measure 0.

[Q may be replaced by any countable dense set]
Fix a point a such that m((a��;a+�)\A)

2� ! 1 as � ! 0. [ By Lebesgue�s
Theorem almost all points of A have this property]. Let 0 < � < 1. Choose
� > 0 such that m((a�r; a+r)\A) > 2�r whenever 0 < r < �. Let D = a+Q.
If x 2 D then x = a+ d for some d 2 Q. Consider m((x� r; x+ r) \ (A+ d)).
Since (a � r; a + r) � (x � r; x + r) � d we have m((x � r; x + r) \ (A + d)) �
m(f(a�r; a+r)+dg\(A+d)) = m((a�r; a+r)\A) > 2�r. Nowm((x�r; x+r)\
(A+Q)) � m((x�r; x+r)\ (A+d)) � 2�r. Fix a positive integer N . Consider
the collection of all intervals of the type (x� r; x+ r) with x 2 D and 0 < r < �
which are contained in (�N;N). Since D is dense this family is a Vitali cover
for (�N;N). Hence there is a disjoint sequence of intervals (xn � rn; xn + rn)
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contained in (�N;N) such that m((�N;N)n
[
n

(xn � rn; xn + rn)) = 0 and

m((xn � rn; xn + rn) \ (A + Q)) � 2�rn for each n. [ Kannan and Kruger
Advanced Analysis on the Real Line, p.10 OR Diestel and Spalsbury, The Joys
of Haar Measure, p. 13]. Now m((A+Q)\ (�N;N)) =

X
n

m((A+Q)\ (xn �

rn; xn + rn)) �
X
n

2�rn = �m((�N;N)). Since � < 1 is arbitrary we get

m((A + Q) \ (�N;N)) = m((�N;N)). Thus m((A + Q)c \ (�N;N)) = 0 for
every N and the proof is complete.

Problem 332

If K1 and K2 are compact subsets of R (and m is the Lebesgue measure)
show that m(K1)+m(K2) � m(K1+K2). Is the reverse inequality true? What
if we replace compact sets by open sets?

Translate K2 by supK1 � infK2. Then the inequality does not change and
the proof is therefore reduced to the case supK1 = infK2(= c; say). In this case
K1[K2 � K1+K2�c ( because c 2 K1\K2) andm(K1)+m(K2) = m(K1[K2)
( because K1nfcg and K2 are disjoint) so m(K1)+m(K2) � m(K1+K2� c) =
m(K1 +K2). The reverse inequality fails when K1 = K2 = C; the Cantor set.
It is not true thatm(U+V ) � m(U)+m(V ) for all open sets: there is an open

set U such that C � U and m(U) < 1=2. Since [0; 2] = C+C � U+U we would
have 2 � m(U+U) � 2m(U) < 1 a contradiction. It is true thatm(U)+m(V ) �
m(U + V ) for any two open sets U and V . Let � > 0 and choose compact sets
H;K such that H � U;K � V;m(U) < m(H)+ � and m(V ) < m(K)+ �. Then
m(U) +m(V ) < m(H) +m(K) + 2� � m(H +K) + 2� � m(U + V ) + 2�.

Problem 333

Let � be a complex Borel measure on R such that the conditions fn ! 0

a.e. [m]; f 0ns uniformly bounded and each fn is continuous imply
Z
fnd�! 0.

Show that � is absolutely continuous w.r.t. m:

Proof: let m(A) = 0. Let K be any compact subset of A. Then IK 2
L1(m+ j�j) so we can �nd a sequence ffng of continuous functions converging
to IK in L1(m+ j�j). Some subsequence ffnkg converges to IK a.e. [m+ j�j].
Let gk = maxf0;minffnk ; 1gg. Then fgkg converges to IK a.e. [m+ j�j]. Since
m(K) = 0 the sequence fgkg converges to 0 a.e. [m]. By hypothesis

Z
gkd�! 0.

By DCT
Z
gkd�!

Z
IKd�. Hence �(K) = 0. Since K is an arbitrary compact

subset of A and j�j is regular we get �(A) = 0.

Problem 334
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Let f be a twice continuously di¤erentiable map from R to R such that
1Z

�1

1Z
�1

jf(x)�f(y)j
jx�yj2 dxdy <1. Show that f is a constant.

Note that there is a �nite constant C such that jf(x)� f(y)� (x� y)f 0(y)j �

C(x � y)2 8x; y 2 [�1; 1]. Hence

1Z
�1

1Z
�1

jf(x)�f(y)�(x�y)f 0(y)j
jx�yj2 dxdy < 1. It

follows from this and the hypothesis that

1Z
�1

1Z
�1

j(x�y)f 0(y)j
jx�yj2 dxdy < 1. Hence

1Z
�1

j(x�y)f 0(y)j
jx�yj2 dx < 1 for almost all y. This implies f 0(y) = 0 a.e.. Since f 0 is

continuous the conclusion follows.
Remark: smoothness of f can be replaced by mesurability by approximating

f by smooth fucntions and the result can be further generalized by replacing R
by Rn and [�1; 1] by any ball in Rn.

Problem 335
Recall Vitali-Hahn-Saks Theorem: if a sequence of complex mesures con-

verges set-wise the limit is a measure. Give a counterexample to show that the
limit of a sequence of positive mesaures may not be a measure even if it is not
identically 1. [ See problem 614]

Let pij = 2�j if 1 � j � i and pij = 1 if j > i. Let �n(E) =
X
j2E

pnj . This

gives a sequence of �� �nite measures on N with the sigma algebra of all subsets.
Claim: �n+1(E) � �n(E) for all E � N. For this it su¢ ces to observe that
p(n+1)j � pnj for all n; j: If j > n then the inequality holds because pnj = 1. If
j � n < n+1 thenp(n+1)j = 2�j = pnj . Hence �n+1 � �n and �(E) = lim�n(E)
exists for all E. Note that �(fkg) = lim�n(fkg) = lim pnk = 2�k for each k.

But �(N) = lim�n(N) =1 so �(N) 6=
1X
k=1

�(fkg).

Problem 336

Show that any function f : [0; 1]! [0; 1] can be expressed as g � h where g :
[0; 1]! [0; 1] is Borel measurable and h : [0; 1]! [0; 1] is Lebesgue measurable.

Let h(x) =
1X
n=1

2an
3n if x =

1X
n=1

an
2n with an 2 f0; 1g for each n. h is well de�ned

if we insist that expansions to base 2 are all in�nite expansions ( we de�ne h(0)
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to be 0). Claim: h is strictly increasing (hence 1-1). To see this suppose
1X
n=1

an
2n <

1X
n=1

bn
2n . Let k be the least positive integer with ak 6= bk. If ak > bk we

get 1
2k
� ak�bk

2k
=

kX
n=1

an
2n �

kX
n=1

bn
2n =

1X
n=1

an
2n �

1X
n=1

bn
2n +

1X
n=k+1

bn
2n �

1X
n=k+1

an
2n

<
1X

n=k+1

bn
2n �

1X
n=k+1

an
2n �

1X
n=k+1

1
2n (=

1
2k
) since bn � an � 1 for all n. This

implies that equality holds throughout and ak � bk = 1; bn � an = 1 for all

n > k. But then an = 0 and bn = 1 for all n > k and the expansion
1X
n=1

an
2n is a

�nite expansion. We have proved that ak < bk. This implies
1X
n=1

2an
3n <

1X
n=1

2bn
3n

since
1X
n=1

2bn
3n �

1X
n=1

2an
3n � 1

3k
�

1X
n=k+1

2
3n = 0 and equality can hold only if

an � bn = 1 and so bn = 0 for all n > k, a contradiction. If x 2 h([0; 1])
we de�ne g(x) = f(h�1(x)). Otherwise we set g(x) = 0. Since h([0; 1]) is
contained in the Cantor set, g is 0 a.e. Hence g is Lebesgue measurable. Also
g(h(y)) = f(y) for all y so f = g � h.

Problem 337

Does Dominated Convergence Theorem hold for nets of measurable func-
tions?

No! For any �nite set I � [0; 1] let fI be a continuous function which is 1 on

I; takes values in [0; 1] and satis�es the inequality

1Z
0

fI(x)dx <
1

#(I) (#(I) is

the cardinality of I). Order �nite subsets of [0; 1] by inclusion. Then fI(x)! 1

for each x but f
1Z
0

fI(x)dxg ! 0.

Problem 338

Show that Xn
P! X if and only if Q �X�1

n
w! Q �X�1 for every probability

measure Q equivalent to P . [Q equivalent to P means Q << P and P << Q]

Proof: let Yn = tan�1(Xn) and Y = tan�1(X). Then Xn
P! X i¤ Yn

P! Y .
Also Q � X�1

n
w! Q � X�1 i¤ Q � Y �1n

w! Q � Y �1. Hence there is no loss
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of generality in assuming that X and X 0
ns are uniformly bounded. It is clear

that Xn
P! X implies Xn

Q! X and hence Q � X�1
n

w! Q � X�1. We now
assume that Q � X�1

n
w! Q � X�1 whenever Q is equivalent to P . We have

to show convergence in probability. Let P (A) > 0; 0 < t < 1 and Q(B) =
tP (A \ B) + (1 � t)P (Ac \ B): Then Q is a probability measure equivalent

to P . Hence Q � X�1
n

w! Q � X�1 which implies
Z
XndQ !

Z
XdQ. Given

� > 0 choose t such that 1�t
t < �=(2M) and t > 1=2 where M is an upper

bound for jXj and jXnj0 s. Since
����Z XndQ�

Z
XdQ

���� < � for n su¢ ciently large

we get

������t
Z
A

XndP + (1� t)
Z
Ac

XndP � t
Z
A

XdP � (1� t)
Z
Ac

XdP

������ < � for such n.

But then

������t
Z
A

XndP � t
Z
A

XdP

������ < � +

������(1� t)
Z
Ac

XndP � (1� t)
Z
Ac

XdP

������ < � +

2M(1� t) which gives

������
Z
A

XndP �
Z
A

XdP

������ < �
t + 2M

1�t
t

< 2� + � = 3�. We have proved that
Z
A

XndP !
Z
A

XdP for each A. This

implies that
Z
ZXndP !

Z
ZXndP for any simple function Z 2 L2(P ) hence

for all Z 2 L2(P ). If we show that
Z
X2
ndP !

Z
X2dP it would follow that

Xn ! X in L2(P ) and hence in probability. [ If a sequence fxng in a Hilbert
space converges weakly to x and if kxnk ! kxk then kxn � xk ! 0. Since
Q �X�1

n
w! Q �X�1 for every probability measure Q equivalent to P we have

P �X�1
n

w! P �X�1 and so
Z
X2
ndP !

Z
X2dP .

Problem 339
Let (X; d) be a connected separable matric space and assume that X is not

a �nite set. Show that there is a measure � on the Borel subsets of X such that
�(U) =1 for every non-empty open set U but � is �� �nite.

Connectedness is used only to assert that there are no isolated points. Let

fxng be a countable dense set (with x0ns distinct) and � =
1X
n=1

�xn . If An =

fxn+1; xn+2; :::g then \An = ; and [Acn = X. Since �(Acn) = N < 1 it
follows that � is �� �nite. Suppose U is a non-empty open set and �(U) <1.
Then U contains at most �nite number of x0ns. There is a smaller non-empty
open set containing a single point xn0 of fx1; x2; :::g. If this smaller open set
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contains a point x other than xn0 then some ball around x contains no point of
fx1; x2; :::g, which is a contradiction. It follows that fxn0g is open (and closed)
which contradicts the hypothesis. Note that if f : X ! R is continuous andZ
jf j d� < 1 then �(fx : jf(x)j > �g) < 1 for each � > 0 which implies

fx : jf(x)j > �g is empty for each � > 0,so f is identically 0!.

Problem 340

If f : R2 ! R is increasing in each variable does it follow that f is Borel
measurable?

No! Let A = f(x;�x) : x 2 Rg and B be a non-Borel subset of A. Let

f((x; y)) =

8>><>>:
0 if x < �y
3 if x > �y
1 if (x; y) 2 B
2 if (x; y) 2 AnB

9>>=>>; :

f is not measurable because f�1((0:5; 1:5)) = B : It is easy to check that f
is increasing in each variable.

Problem 341

Show that there exist continuous probability density functions fn; n = 1; 2; :::

supported by [0; 1] such that

bZ
a

fn(x)dx ! b � a whenever 0 � a � b � 1 but

Z
A

fn(x)dx9 m(A) for some Borel set A.

Let A be a Cantor-like set such that 0 < m(A) < 1. We claim that Lebesgue
measure m belongs to the closure of the (convex) set of all probability measures
on [0; 1] which have �nite support in Ac. If this is false then there exists f 2

C[0; 1] such that

1Z
0

f(x)dx <

Z
fd� for every � which has �nite support in

Ac.. [ This follows from a separation theorem applied to the dual of C[0; 1]

with the weak� topology]. In particular

1Z
0

f(x)dx < f(y) for every y 2 Ac.

Since A has no interior Ac is dense. Hence

1Z
0

f(x)dx � f(y) for every y and

strict inequality holds on a set of positive measure. This is a contradiction
and so the claim is established. For each probability measure � on [0; 1] which
have �nite support in Ac we can �nd continous density functions gn such that
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gndx! � weakly. [ For example if x0 2 Ac then �x0 is the weak limit of fgndxg

where gn(x) =

8<: n2(x� x0 + 1
n ) if x0 �

1
n � x � x0

n2(x0 � x+ 1
n ) if x0 � x � x0 +

1
n

0 if jx� x0j < 1
n

9=;. By taking convex

combinations we get the same conclusion for any probability measure on [0; 1]
which has �nite support in Ac]. It follows that there exist continuous probability
density functions fn; n = 1; 2; ::: supported by [0; 1] such that fn(x)dx! m and

fn(x) = 0 for all x 2 A. Since
Z
A

fn(x)dx = 0 for all n but m(A) > 0 we are

done.

Problem 342

If X and Y are non-negative integer valued random variables such that
EtX+Y = EtXEtY for 0 � t � 1 does it follow that X and Y are independent?

No!. LetA1; :::; A9 be the following sets: A1 = (0; 1=9); A2 = (1=9; 1=6); A3 =
(1=6; 1=3); A4 = (1=3; 1=2); A5 = (1=2; 11=18); A6 = (11=18; 2=3); A7 = (2=3; 13=18);

A8 = (13=18; 8=9); (8=9; 1) and X = Y = 1 on A1; X = 1; Y = 2 on A2; X =
1; Y = 3 on A3; X = 2; Y = 1 on A4;

X = Y = 2 on A5; X = 2; Y = 3 on A6; X = 3; Y = 1 on A7; X = 3; Y = 2
on A8; X = Y = 3 on A9. It is easily seen that both X and Y take the vaues
1; 2; 3 with probabilities 1=3 each. Hence their common moment generating
function is given by M(t) = t+t2+t3

3 . Also EtX+Y = (1=9)t2 + (1=18 + 1=6)t3 +
(1=6 + 1=18 + 1=9)t4 + (1=18 + 1=6)t5 + (1=9)t6

= (1=9)t2 + (2=9)t3 + (3=9)t4 + (2=9)t5 + (1=9)t6 = ( t+t
2+t3

3 )2 = EtXEtY .
Remark: it is trivial to �nd random variables X and Y which are not in-

dependent such that Eeit(X+Y ) = EeitXEeitY 8t 2 R but X and Y are not
independent: take X = Y with characteristic function e�jtj.

Problem 343

Suppose Xn � 0; fXng is uniformly integrable and Xn ! 0 a.s. and in L1.
Can we conclude that E(XnjG)! 0 a.s.?

No! Arrange the intervals ( i�12n ;
i
2n ); 1 � i � 2n; n � 1 according to the

dictionary order on the pairs (n; i). Call these sets A1; A2; :::. Let Bn = (0; 1=n)
and Xn = nIAn�Bn on 
 = (0; 1) � (0; 1) with Borel sigma �eld and Lebesgue
measure. . Then Xn � 0; Xn ! 0 at every point and EXn = m(An)! 0. Let G
be the sigma �eld generated by the �rst projection which is fA�(0; 1) : A is Borel
in (0; 1)g. A simple veri�cation shows that E(XnjG) = IAn�(0;1). Of course
IAn�(0;1) does not converge to 0 a.s. Note that fXng is uniformly integrable
but not dominated by any L1 function. [ If it is dominated then we would have
lim supE(XnjG) � E(lim supXnjG). But the left side is 1 and the right side is
0!
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Problem 344

IfX 0
ns are independent identically distributed positive random variables does

it follow that EX1X2::: = (EX1)(EX2):::. assuming that all the products and
expectations exist.

No! Let X 0
ns take values 1=2 and 3=2 with probabilty 1=2 each. Then

EXn = 1=4 + 3=4 = 1 so (EX1)(EX2)::: = 1. We claim that EX1X2::: =
0. Since E(X1X2:::Xn+1=X1; X2; :::; Xn) = X1X2:::XnEXn = X1X2:::Xn it
follows that fX1X2:::Xng is a non-negative martingale. Hence it converges
a.s. We shall show that the limit is 0 a.s. thereby completing the proof. Let
Nn = #fk � n : Xk = 3=2g. Then X1X2:::Xn = (1=2)n�Nn(3=2)Nn = 3Nn

2n .

By SLLN applied to fIXk
= 3=2g we see that 1

nNn ! 1=2. Hence log(3
Nn

2n ) =
Nn log 3�n log 2 = n( 1nNn log 3�log 2)!!1 a.s. because 1=2 log 3�log 2 < 0.

Problem 345

Let f : R ! R be measurable and f(x + y) � f(x) be continuous for all
y in some set of positive measure. Show that f is continuous. Show that
measurability cannot be dropped. If f(x+ y)� f(x) be continuous for all y in
some set with a limit point can we conclude that f is continuous? Does there
exist a set A of measure 0 such that if f(x + y) � f(x) is continuous for all y
in A then If f is necessarily continuous? If A is at most countable show that
there exist f such that f(x+ y)� f(x) is continous for all x in A but f is not
continuous. If f : R! C is continuous and f(x+ y)� f(x) is an entire function
for all y in some set with a limit point can we conclude that f is entire?

We �rst note that fy : f(x+y)�f(x) is continuousg is an additive subgroup
of R: Hence, if it contains a set of positive measure than it must be the whole
of R. [ Because m(A) > 0 implies A � A contains an interval around 0]. Now

let g(x) = e�jf(x)j. The function t !
1Z
0

jg(x� t)� g(x)j dx is continuous.[

See Rudin�s Real and Complex Analysis, for example]. Let xn ! 0. ThenZ 1

0

jg(x+ xn)� g(x)j dx ! 0. We claim that jf(xn)j 9 1. If jf(xn)j ! 1
then for any x jf(x+ xn)j ! 1 too ( because f(xn+x)� f(xn)! f(x)� f(0)
by hypothesis, so f(xn+x)�f(xn)g is bounded). It follows that g(x+xn)! 0

and Dominated Convergence Theorem gives
Z 1

0

jg(x)j dx = 0. This is obviously
a contradiction. Hence xn ! 0 implies ff(xng is bounded. In other words,
f is bounded in a neighbourhood of 0. Now f(x + y) � f(x) is bounded in a
neighbourhood of 0 and hence f(x + y) is bounded in a neighbourhood of 0.
This is true for each y and it follows easily that f is bounded on compact sets.
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Now

1Z
0

[f(x+ y)� f(x)]dy is continuous by Dominated Convergence Theorem.

This means

x+1Z
x

f(y)dy�f(x) is continuous. Since the �rst term is continuous it

follows that f is continuous. The conclusion may fail when f is not measurable:
there exists additive non-measurable (hence non-continuous) functions. If f(x+
y) � f(x) be continuous for all y in some set with a limit point can we cannot
conclude that f is continuous: let f = IQ so that f(x+ y)� f(x) = 0 for every
rational number y. If f is continuous and f(x+ y)� f(x) is an entire function
for all y in some set with a limit point can we cannot conclude that f is entire:

let f(z) =
�
z . If A is atmost countable then the subgroup B of (R;+) generated

by A is also at most countable. Let f = IB . Then f(x + y) � f(x) is the zero
function for all x 2 A but f is not continuous since B 6= R. If A is the Cantor
set of measure 0 then the group generated by A is R (becuase A + A = [0; 2])
hence the continuity of f(x+y)�f(x) for y in A implies the same for all y which
implies continuity of f . Hence there does exist a set A of measure 0 such that
if f(x+ y)� f(x) is continuous for all y in A then f is necessarily continuous.

Problem 346

Let X and Y be random variables such that X;Y;X +Y;X �Y all have the
same distribution. If the common distribution has �nite mean show that X = 0
a.s. Prove that the assumption on �niteness of the mean cannot be dropped.

Since 2E jXj = E j(X + Y ) + (X � Y )j = E j(X + Y )j + E j(X � Y )j it fol-
lows that X + Y = Z(X � Y ) for some non-negative random variable Z. Hence

X(Z�1) = Y (1+Z). Noting that jZ � 1j � 1+Z we get jY j (1+Z) � jXj (1+Z)
which implies jY j � jXj. Since both sides have the same mean we get jY j = jXj.
This implies jXj (1+Z) = jXj j1� Zj so 1+Z = j1� Zj when X 6= 0. In other
words X 6= 0 implies Z = 0 and X(0� 1) = Y (1 + 0) or Y = �X. But X = 0
implies

Y (1 + Z) = 0 so Y = 0. Hence Y = �X in both cases and X + Y = 0 a.s.
It follows that X = 0 a.s.
For the counterexample let U; V be i.i.d. with characteristic function e�jtj.

Let X = U+V
2 and Y = U�V

2 .

Problem 347

Let (X; d) be a separable metric space, A be a closed subset such that every
subset of A is open in A: Show that A is at most countable.

If B � A then IB is continuous on A. By Tietze Theorem we can extend it
to a real continuous function fB on X: The map B ! ffB(xn)g, where fxng

169



is a countable dense subset of X, is injective: There are c elements in RN and
so there are at most c subsets of A: Hence A is at most countable. Alternate
proof: A is itself a separable metric space with discrete topology. The open
cover formed by sigletons has a countable subcover.

Problem 348

Let fang � R with
X
n

janj <1. Let S = f
X
n2I

an : �I � Ng. Is S closed? Is

it necessarily a closed interval if an > 0 for all n?.

Yes. The map � which takes f�ng 2 f0; 1gN to
X
n2I

an where I = fn : �n = 1g

is continuous on f0; 1gN with the product topology: given � > 0 choose N such
that

X
n>N

janj < �. If f�(j)n g ! f�ng in f0; 1gN then there exists j0 such that

�(j)n = �n for 1 � n � N and j � j0. It follows that
����(f�(j)n g)� �(f�ng)��� � 2�

for j � j0. Tychono¤�s Theorem shows that the range S of this map is compact.
[Note that S is actually a perfect set]. If an = 2

3n then S is the Cantor set, so

j � j0, so S need not be an interval. Z. Nitecki has an article which gives a
complete characterization of subsums of series whose n� th term tends to 0:

Problem 349

Let X be a Banach space, M closed subspace of X� such that x�(x) = 0 for
all x� 2M implies x = 0. Prove that the following are equivalent:
a) there exists c 2 (0;1) such that c kxk � supfjx�(x)j : x� 2M; kx�k = 1g

for all x 2 X
b) fx�� 2 X�� : x��(x�) = 0 for all x� 2 Mg + X is a closed subspace of

X��.

We �rst observe that fx�� 2 X�� : x��(x�) = 0 for all x� 2 Mg \ X =
f0g by hypothesis. Hence the sum in b) is a direct sum. Suppose a) holds.
De�ne a new norm on fx�� 2 X�� : x��(x�) = 0 for all x� 2 Mg + X by
kx�� + xk1 = kx��k+ kxk. It is easy to see that this is a complete norm. If we
show that the new norm is equivalent to the original norm we can conclude that
fx�� 2 X�� : x��(x�) = 0 for all x� 2Mg+X is complete, hence closed in X��.
Of course kx�� + xk1 � kx�� + xk. We claim that ky��jMk = d(y��; N) for

all y�� 2 X�� where N = fx�� 2 X�� : x��(x�) = 0 for all x� 2Mg. To see this
we note that if x��0 2 N then jy��(x�)j = jy��(x�)� x��0 (x�)j � ky�� � x��0 k kx�k
for x� 2M so ky��jMk � ky�� � x��0 k for all x��0 2 N which implies ky��jMk �
d(y��; N). On the other hand there exists z�� 2 X�� such that z�� = y��

on M and kz��k = ky��jMk. We have d(y��; N) � ky�� � (y�� � z��)k =
kz��k = ky��jMk. We have proved the claim. For x 2 X and x�� 2 N
we have kx�� + xk � d(x;N) = kxjMk ( by the claim, with y�� = x) which
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gives kx�� + xk � supfjx�(x)j : x� 2 M; kx�k = 1g � c kxk by a). This gives
kx�� + xk1 = kx��k + kxk � kx�� + xk + 2 kxk � (1 + 2

c ) kx
�� + xk. We have

proved the equivalence of the two norms on N +X. This proves a) implies b).
Now suppose b) holds. Since X + N is complete and kx�� + xk1 � kx�� + xk
it follows that the two norms are equivalent ( by Open Mapping Theorem)
and hence there exists C 2 (0;1) such that kx��k + kxk = kx�� + xk1 �
C kx�� + xk. In particular kxk � C kx�� + xk for all x�� 2 N . Hence kxk �
Cd(x;N) = C kxjMk = C supfjx�(x)j : x� 2 M; kx�k = 1g and a) holds with
c = 1

C .

Problem 350

Suppose fxng is a sequence of unit vectors in a Hilbert space H such that
lim inf kxn + xk � kxk for all x 2 H. Show that xn ! 0 weakly. Is this true in
Banach spaces?

We have lim inf[1 + 2kRe < xn; x >] � 0 for every x and every positive
integer k. This gives Re < xn; x >! 0. [ If Re < xnj ; x >� � > 0 for some fnjg
replace x by �x to get a contradiction. If �Re < xnj ; x >� � > 0 then also we
have a contradiction]. In the real case change x to �x and in the complex case
change x to ix to see that < xnj ; x >! 0.
The conclusion may fail in a Banach space: let X = L1[0; 1]; fn = nI(0; 1n ).

Then
Z
jfn + gj =

Z 1=n

0

jn+ gj+
Z 1

1=n

jgj

=

Z 1=n

0

[jn+ gj � jgj] +
Z 1

0

jgj and
Z 1=n

0

[jn+ gj � jgj] �
Z 1=n

0

[n � 2 jgj] =

1� 2
Z 1=n

0

jgj ! 1 so the hypothesis is satis�ed. However the constant function

1 is in X� and
Z
(fn)(1) = 1 for all n so fn 9 0 weakly. [ If we rede�ne f 0ns by

fn(x) = 2n(
1
n � x) for 0 � x � 1

n and 0 elsewhere we get a similar conclusion

in C[0; 1]].

Problem 351
Let X be the Banach space of all bounded continuous functions from R into

itself. Show that there is a linear map � : X ! R such that �f � 0 for any

non-negative function f in X but the equation �f =
Z
fd� (f 2 X) does not

hold for any measure �.

If such a measure exists it is necessarily a �nite positive measure. Let
xn = n + 1

2 ; n � 1. Let p(f) = lim sup f(xn) for any f 2 X. Note that
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p(f + g) � p(f) + p(g) and p(cf) = cp(f) for c � 0. The map � which
takes a constant function to the constant value is a linear map on the one-
dimensional subspace of constants satisfying the condition �f � p(f). By
Hahn Banach Theorem there exists a linear map � on X mapping 1 to 1
such that �(f) � p(f) = lim sup f(xn) for any f 2 X. Changing f to �f
we get ��(f) � lim supf�f(xn)g = � lim inf f(xn). Hence lim inf f(xn) �
�(f) � lim sup f(xn). In particular � is a positive linear functional. [ Also

j�f j � kfk1]. Suppose �f =
Z
fd� (f 2 X). Let fn be a continuous function

: R! [0; 1] such that fn(x) = 1 for jxj � n and fn(x) = 0 for jxj > n+ 1. Note
that p(fn) = lim sup

m!1
fn(xm) = 0 for each n. Also fn ! 1 pointwise. By Bounded

Convergence Theorem we most have �fn =
Z
fnd� !

Z
1d� = �1 = 1. How-

ever �fn � p(fn) = 0 for each n:

Problem 352

Show that there exists non-zero elements f and g in L1(R) such that f�g = 0.
However, f � f = 0 implies f = 0.

The second part follows by taking Fourier transform. Let f(x) = 1�cos x
x2 for

x 6= 0 and f(0) = 0. Let g(x) = e2ixf(x). Then the Fourier transform of f � g
is 0.

Problem 353

Let f : R! R be a given map and let � be the smallest topology on R which
makes f continuous. Suppose g : (R; �) ! R is continuous. Show that there
exists a unique continuous function h : f(R)! R such that g = h � f .

Suppose f(x) = f(y). If g(x) 6= g(y) then there exist disjoint open sets U; V
in R such that g(x) 2 U and g(y) 2 V . By hypothesis there exist open sets U1; V1
in R such that g�1(U) = f�1(U1) and g�1(V ) = f�1(V1). Then f(x) 2 U1 and
f(y) 2 V1. Since f(y) 2 V1 we have f(x) 2 V1 too and x 2 f�1(V1) = g�1(V ).
Thus g(x) 2 V contradicting the fact that g(x) 2 U and U \V = ;. This shows
that f(x) = f(y) implies g(x) = g(y). Hence there exists a unique function
h : f(R)! R such that g = h � f . We now prove that h is continuous. Suppose
f(xn)! f(x). If S is an open set containing g(x) then there exists an open set
T such that g�1(S) = f�1(T ). Since x 2 g�1(S) we see that f(x) 2 T . Hence
f(xn) 2 T for all n su¢ ciently large. But then xn 2 f�1(T ) = g�1(S) and
g(xn) 2 S for all n su¢ ciently large. Thus g(xn)! g(x). This proves that h is
continuous on f(R).

Remark: the function h may not extend continuously to R. For example
of f(x) = e�jxj and g(x) = ejxj the the hypothesis is satis�ed and h(t) = 1

t
for all t 2 (0; 1] � f(R). Compare this situation with the following: if 
 is a
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non-empty set and f : 
! R is a given map then for any measurable function
g : (
;G) where G is the sigma �eld generated by f there exists a measurable
function h : R ! R such that g = h � f . [ This is proved easily by a simple
function approximation].

Problem 354 [ World turned upside down!]

a) Let p > 1 and q = 1 � p. Let g be a positive measurable function withZ
g > 0. Let f be a non-negative measurable function which is integrable. Show

that
Z
fpgq � (

Z
f)p(

Z
g)q.

b) Let 0 < p < 1, f and g non-negative measurable functions such that f +

g > 0 and
Z
fp+

Z
gp <1. Show that (

Z
(f+g)p)1=p � (

Z
fp)1=p+(

Z
gp)1=p.

The integrals are w.r.t. any positive measure.

We have
Z
f =

Z
[fgq=p][g�q=p] � [

Z
[fgq=p]p]1=p

Z
(g�q=p)p=(p�1)]1�1=p =

[

Z
fpgq]1=p[

Z
g]1�1=p. This gives

Z
fpgq � (

Z
f)p(

Z
g)q proving a): Proof of

b): we have
Z
(f + g)p =

Z
f(f + g)p�1 +

Z
g(f + g)p�1 =

Z
(fp)1=pf(f +

g)pg1�1=p +
Z
(fp)1=pf(f + g)pg1�1=p

� (

Z
fp)1=p(

Z
(f + g)p)1�1=p + (

Z
gp)1=p(

Z
(f + g)p)1�1=p by a) with p

changed to 1=p. Hence (
Z
(f + g)p)1=p � (

Z
fp)1=p + (

Z
gp)1=p.

Problem 355

Let � be a complex measure on (R;B). Let �c be the measure E !
Refc�(E)g for each c 2 � � fz 2 C : jzj � 1g. Show that the supremum
of the family of real measures f�c : c 2 �g is j�j :
Remark: setwise supremum of a family of measures is not a mesure in gen-

eral. What we are asked to show is the following: �c(E) � j�j (E) for each E
and if � is a real mesure such that �c(E) � �(E) for each E then j�j (E) � �(E)
for each E.

It is obviuos that �c(E) � j�j (E) for each E. If � is as above let � = j�j+j�j.

Let g = d�
d� ; h =

d�
d� . Then

Z
E

Re(cg)d� = Re c

Z
E

gd� = �c(E) � �(E) =

Z
E

hd�.

Since this holds for each Borel set E we get jRe(cg)j � h a.e. [�]. Since � is
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separable this gives jgj � h a.e. [�]. This implies that � is necessarily a positive
measure and j�j � �.

Problem 356
See also problems 589-592

On [0; 1]� [0; 1] we cannot write jx� yj as
nX
i=1

fi(x)gi(y) with n 2 N; f 0is and

g0is continuous

� We �rst show that the functions jx� aij ; 1 � i � k are linearly indepen-
dent if the numbers a1; a2; :::; ak 2 [0; 1] are distinct. This is easily seen
from the fact that jx� aij cannot be written as a linear combination of
jx� aj j ; j 6= i because jx� aij is not di¤erentiable at ai whereas jx� aj j

is di¤erentiable at ai for j 6= i. Now suppose jx� yj =
nX
i=1

fi(x)gi(y).

Choose n + 1 distinct points a1; a2; :::; an+1. Let �i;j = gi(aj); 1 � i �

n; 1 � j � n + 1. The system of n equations
n+1X
j=1

�j�i;j = 0; 1 � i � n

in n + 1 variables �1; �2; :::; �n+1 has a non trivial solution. When �
0
js

satisfy these equations we have 0 =
n+1X
j=1

nX
i=1

�jfi(x)gi(aj) =

n+1X
j=1

�j jx� aj j

contradicting the fact that jx� aj j ; 1 � j � n+1 are linearly independent.

Problem 357

See also problems 589-592
If X;Xn; n = 1; 2; ::: are random variables taking values in [0; 1] such that

E jXn � aj ! E jX � aj for each a 2 [0; 1] show that Xn
w! X. [ w! denotes

weak convergence]

Claim: if f : [0; 1] ! R is a piecewise linear continuous function then there
exist points 0 = a0 < a1 < ::: < aN = 1 and real numbers c0; c1; :::; cN

such that f(x) =
NX
i=1

ci jx� aij + c0. Granting this for the moment we get

Ef(Xn)! Ef(X) for any piece-wise linear continuous function. Since any con-
tinuous function from [0; 1] to R can be uniformly approximated by piece-wise
linear continuous functions it follows that Ef(Xn) ! Ef(X) for any contin-
uous function f which proves wek convergence. To prove the claim let f be
linear on [ai�1; ai] for 1 � i � N where 0 = a0 < a1 < ::: < aN = 1. Since
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NX
i=1

ci jx� aij + c0 is also linear on [ai�1; ai] for 1 � i � N (for any choice of

c0is) it su¢ ces to show that f(0) =
NX
i=1

ciai + c0 and the slope
j�1X
i=1

ci �
NX
i=j

ci

of
NX
i=1

ci jx� aij+ c0 on [ai�1; ai] coincides with the slope, say mj of f on that

interval. We de�ne cj =
mj+1�mj

2 for 1 � j � N � 1 and cN = �m1+mN

2 .

Finally we choose c0 such that f(0) =
NX
i=1

ciai + c0. This completes the proof.

Problem 358

Consider the sequence ffng in f0; 1gR de�ned by fn(x) = [2nx]� 2[2n�1x].
Prove that ffng has no subsequence converging pointwise to any function.

Suppose fnk ! f pointwise on R. Of course each fn is measurable and
hence f is measurable. If i�1

2n�1 � x < i
2n�1 then either

2i�2
2n � x < 2i�1

2n or
2i�1
2n � x < 2i

2n . In the �rst case fn(x) = 0 and in the second case fn(x) = 1.
Let 2l�2

2n+m � x+ 1
2m < 2l�1

2n+m . Then fn+m(x+
1
2m ) = (2l � 2)� 2(l � 1) = 0 and

since 2l�2�2n
2n+m � x < 2l�1�2n

2n+m we have 2i�2
2n � x < 2i�1

2n where i = l � 2n�1 we
get fn(x) = 0 too. Similarly if 2l�1

2n+m � x+ 1
2m < 2l

2n+m then fn+m(x+ 1
2m ) = 1 =

fn+m(x). Hence fn+m(x+ 1
2m ) = fn+m(x) for all x 2 R for all m 2 N. It follows

that f(x+ d) = f(x) 8x 2 R;8d 2 D where D is the set of all dyadic rationals.
Thus f is a function with values in f0; 1g which has every dyadic rational as
a period. We prove that such a function cannot be measurable. Let A = fx :
f(x) = 1g and B = fx : f(x) = 0g. Then

Z
jId+A � IAj = 0 if d 2 D. By the

continuity of translates in L1 we conclude that
Z
jIy+A � IAj = 0 for all y 2 R.

We claim that IA is constant almost everywhere. Let �n(t) =
1p
2�n

e�t
2=2n.

Then it is easy to see that �n � IA is a continuous function which has every
real number as a period. It follows that �n � IA is a constant for each n. Also
�n �IA ! IA in L1 so IA is a constant. To arrive at a contradiction from this we
prove thatm((0; 1)\f�1n f0g) = m((0; 1)\f�1n f1g) = 1

2 . Indeed for 0 < x < 1 we
have fn(x) = 0 i¤ x 2 2i�2

2n � x < 2i�1
2n for some i. Hence m((0; 1) \ f�1n f0g) =X

i even ;1�i�2n

1
2n = 1

2 which of course implies m((0; 1) \ f
�1
n f1g) = 1

2 . Now

the fact that fnk ! f pointwise implies m(ff > 1=2g) � lim infm(ffnk >
1=2g) = 1

2 and m(ff < 1=2g) � lim infm(ffnk < 1=2g) =
1
2 so f cannot be a.e.

constant.

Remark: by Tychono¤�s Theorem there is a subnet of ffng which converges.
The limiting fucntion is non-measurable by above argument.
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Problem 359

Give an example of a map � from [0; 1] into a (necessarily non-separable)
Hilbert space H with the following properties:
a) � is not Lebesgue measurable
b) for each x 2 H the map t !< x; �(t) > is Lebesgue measurable and, in

fact, it is 0 a.e.
c) ��1(B) is a Borel set for each open ball B in H.

Let H be a real Hilbert space with an orthonormal basis fetg0�t�1 in-
dexed by [0; 1]. Let �(t) = et. Let A be a non-measurable set in [0; 1].
We claim that x !

X
t2A

< x; et >2 is continuous on H. To see this we

just have to apply triangle inequality:

������
sX
t2A

< x; et >2 �
sX
t2A

< y; et >2

������ �sX
t2A

< x� y; et >2 � kx� yk. Now fx :
X
t2A

< x; et >
2 6= 0g is an open set

in H whose inverse image under � is A. This proves a). If x 2 H the map
t !< x; �(t) > is 0 a.e. because it is 0 except on a countable set. Finally
ft : ket � xk < rg = ft : 1 + kxk2 � 2 < x; et >< r2g is either a subset of
ft :< x; et >6= 0g or the complement of such a set.

Problem 360

Let f : R! R. The following two statements are equivalent:
a) there exists g : R! R such that f = g a.e. and g is continuous a.e.
b) there exists a set A of measure 0 such that the restriction of f to Ac is

continuous [ w.r.t. the topology on Ac induced by the usual topology on R].

To see that a) implies b) just take A = fx : f(x) 6= g(x)g. For the converse
we de�ne g by g(t) = lim inf

y2Ac;y!t
f(y). [Note that Ac is dense, so there exist

sequences fyng � Ac converging to t]. It is clear that g = f on Ac. Hence f = g
a.e.. We now prove that g is continuous at each point of Ac. Let t 2 Ac and
� > 0. There exists � > 0 such that jf(y)� f(t)j < � if y 2 Ac and jy � tj �
�. Let s 2 R and js� tj < �=2. We claim that jg(s)� g(t)j � �. We have
f(y) < f(t)+ � = g(t)+ � whenever y 2 Ac and jy � tj � �. The same inequality
holds if y 2 Ac and jy � sj � �=2. Hence g(s) = lim inf

y2Ac;y!s
f(y) � g(t) + �. Also

f(y) > f(t) � � = g(t) � � y 2 Ac and jy � tj � �; hence whenever y 2 Ac and
jy � sj � �=2. Therefore g(s) � f(t)� �. This completes the proof.

Remark: above conditiions imply that f is Lebesgue measurable: approx-
imate g by step functions. However not every Lebesgue measurable function
satis�es a) and b).
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Problem 361

Let x and y be unit vectors in a normed linear space X: Let p 2 [1;1) and
0 � t � 1. Show that kx� tpyk � 3p kx� tyk and kx� tykp � 2p kx� tpyk.

Writing tp as �t+(1��)0 with � = tp�1 we get kx� tpyk � tp�1 kx� tyk+
(1 � tp�1). Now (1 � tp�1) = (1 � t)(p � 1)up�2 for some u 2 [t; 1] and (1 �
t)(p � 1)up�2 � (1 � t)(p � 1)tp�2. If p � 2 then (1 � t)(p � 1)up�2 � (1 �
t)(p� 1) � kx� tyk (p� 1) and kx� tpyk � tp�1 kx� tyk+ kx� tyk (p� 1) �
p kx� tyk. If 1 � p < 2 we divide the proof into two cases: if t � 1=3 then
(1 � tp�1) = (1 � t)(p � 1)up�2 � (1 � t)(p � 1)32�p � 3(1 � t)(p � 1) so
kx� tpyk � tp�1 kx� tyk+ 3(1� t)(p� 1)

� tp�1 kx� tyk+3(p�1) kx� tyk � 3p kx� tyk. If t < 1=3 then kx� tpyk �
1 + tp � 2 � 2p � 3p(1 � t) � 3p kx� tyk. For the second part we have
kx� tykp = kx� tykp�1 kx� tyk � (1+t)p�1[kx� tpyk+(t�tp)] � 2p kx� tpyk
because [2p�(1+t)p�1] kx� tpyk � [2p�(1+t)p�1][1�tp] � (1+t)p�1(1�tp) �
(1 + t)p�1(t� tp).

Problem 362

Give a proof of the spectral radius formula for metrices without using Banach
Algebra Theory. You may use the fact that an analytic function on fz : jzj < Rg
has a power series expansion on that disc.

Let A be an N � N complex matrix and � = supfj�j : � is an eigen value
of Ag. Spectral radius formula says � = lim

n!1
kAnk1=n. If � is an eigen value

and Ax = �x; x 6= 0 then j�jn kxk = kAnxk � kAnk kxk so j�j � kAnk1=n

for every n. It follows that � � kAnk1=n for every n. Now 0 < j�j < 1=�
implies ��1 is not an eigen value (by de�nition of �) and so (I � �A)�1 exists.
Also (I � �A)�1 = 1

det(I��A)adj(I � �A). It follows from this that (I � �A)�1

is analytic in fz : jzj < �g. For j�j su¢ ciently small we have (I � �A)�1 =
1X
n=0

�nAn. This can be seen by noting that the series converges for j�j < kAk�1

and we have the identity (I � �A)
1X
n=0

�nAn = I. It follows that the formula

(I � �A)�1 =
1X
n=0

�nAn is valid for j�j < 1=�. The radius of convergence of

1X
n=0

�na
(n)
ij , where a

(n)
ij is the (i; j) element of An, is [lim sup

���a(n)ij

���1=n]�1. Since
this radius is at least ��1 we get � � lim sup

���a(n)ij

���1=n. Taking maximum over

(i; j) we get � � lim sup kAnk1=n where we have taken the de�nition of kAk as
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maxfjaij j : 1 � i; j � Ng. Any other norm on N � N matrices will yield the
same formula since all norms on �nite dimensional spaces are equivalent.
Remark: we don�t really need power series reprsentations of analytic func-

tions. We used only the following fact which is elementary: let p be a polyno-
mial, ci 2 Cnf0g(1 � i � N) and f(z) = p(z)

(z�c1)(z�c2):::(z�cN ) . Then f has a
power series expansion for jzj < minfjcij : 1 � i � Ng. In particular, Cauchy�s
Theorem and its consequences have been avoided completely in this proof.

Problem 363

If Y is dense in a Hausdor¤ space X and if Y is locally compact in the
relative topology from X show that Y is open inX. Hence show that a locally
compact subgroup of a Hausdor¤ topological group is closed.

Let y 2 Y . There is an open set U in X such that y 2 U and the Y� closure
Z of U \ Y is compact: Note that Z � Y; Z is closed in X and U \ Y � Z.

We claim that
�
U = [U \ Y ]� ( where

�
A is the closure of A). If u 2

�
U and V

is an open set containing u then V \ U \ Y is non-empty because V \ U is a

non-empty open set and Y is dense in X. This proves the claim. Now U �
�
U =

[U \ Y ]� �
�
Z = Z � Y . Thus y is an interior point of Y . For the second part

let H be a locally compact subgroup of a Hausdor¤ topological group G. Then
�
H is a Hausdor¤ topological group and H is dense in

�
H. By the �rst part we

conclude that H is open in
�
H. But an open subgroup is always closed so H is

closed in
�
H, hence in G. [ If H0 is an open subgroup of G then Hc

0 =
[
x=2H0

xH0

and this union is open. Hence H0 is closed]

Problem 364

Let A be a closed subgroup of S1 under multiplication. Show that A = S1

or else A is a �nite set.

Let B = fx 2 R : e2�ix 2 Ag. Then B is a subgroup of (R;+). If B is dense
in R then A is dense in S1 because the map p : R! S1 de�ned by p(x) = e2�ix

is continuous. In that case A = S1. If B is not dense then there exists a > 0
such that B = fna : n 2 Zg. But then A = fcn : n 2 Zg where c = e2�ia. If
a is irrational then fcn : n 2 Zg is dense and A = S1. If a is rational then A
is a �nite set. [ The fact that fcn : n 2 Zg is dense when a is irrational is a
standard. Any book on Ergodic Theory contains a proof].

Problem 365

Let H be a closed subgroup of (Rn;+). If H \L is a discrete subspace of L
for every line L through the origin show that H is discrete.
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Remark: if H be a closed subgroup of (Rn;+) which is not discrete then
H \ L is a not discrete subspace of L for some line L through the origin. This
implies that H \ L is dense in L. Since H is closed we get L � H. Thus H
contains an entire line through the origin.

We assume that H is not discrete and prove that H \ L = L for at least
one line L through the origin. If f0g is an isolated point of H so is every other
singleton subset of H and H is discrete. Hence f0g is not isolated. There exists
a sequence fhkg of distinct points of H converging to 0. For each k letmk be the
least positive integer such that kmkhkk < R where R is such that supfkhkk :
k = 1; 2; :::g � R. Then fmkhkg � � where � = fy 2 Rn : kyk < Rg.
Note that (mk + 1)hk =2 �. Claim: there exists kj " 1 and y0 2 Rn such that
mkjhkj ! y0 and (mkj+1)hkj ! y0. Since fmkhkg � � there exists kj " 1 and
y0 2 Rn such that mkjhkj ! y0. Since hk ! 0 we see that (mkj + 1)hkj ! y0
too. The claim is proved. It follows that y0 2 @� and hence y0 6= 0. Note
that y0 2 H because H is closed and fmkhkg � H. Let L = fty0 : t 2 Rg.
If t 2 R then

[tmkj ]hkj � ty0
 � [tmkj ]hkj � tmkjhkj

+ tmkjhkj � ty0
 �hkj + jtjmkjhkj � y0

 [ We used the fact that j[x]� xj � 1 for any real
number x]. Since hkj = (mkj + 1)hkj �mkjhkj ! y0 � y0 = 0 it follows that
[tmkj ]hkj ! ty0 which imlies that ty0 2 H. Thus H \ L = L.

Problem 366

Show that there is no meaurable function f : S1 ! R such that f(ab) =
f(a) + f(b) 8a; b 2 S1 and f not identically 0. Does there exist a (non-
measurable) function f : S1 ! R such that f(ab) = f(a) + f(b) 8a; b 2 S1

and f not identically 0?

For the �rst part de�ne g : R! R by g(t) = f(eit). Then g is a measurable
additive function on R and hence there exists a real number c such that f(eit) =
g(t) = ct for all t. Since f(eit) is periodic we get c = 0 and f � 0. We now prove
the existence of a function f : S1 ! R such that f(ab) = f(a) + f(b) 8; b 2 S1
and f not identically 0. Let H be a Hamel basis for R over Q. Let t0; t1; ::: be a
convergent sequence of distinct points in H. Such a sequence exists because H is
uncountable. Let � : H ! R be any function such that �(tj) = j for j � 0. Let
g : R! R be obtained by linearly extending �. Let f(eit) = g( t02� t). Note that

eit = eis implies t = s + 2n� for some integer n and g( t02� t) = g( jtj2� s) because
g is additive and g( t02�2n�) = ng(t0) = n�(t0) = 0. Hence f is well de�ned.
Clearly f satis�es the functional equation f(ab) = f(a) + f(b) 8a; b 2 S1.

Remarks. there exists f : Cnf0g ! R such that f(ab) = f(a)+f(b). Simply
compose the map constructed above with the map z 2 z

jzj . This map cannot
coincide with any branch of the logairthm obtained by deleting a ray through the
origin because these branches are measurable and f is not. If f : Cnf0g ! R is a
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measurable function such that f(ab) = f(a)+f(b) for all a; b then f(a) = c log jaj
for some c 2 R.

Problem 367

Let f 2 C(S1) and � be the normalized Haar measure on S1. Show thatZ
fd� = lim

n!1
1

2n+1

nX
k=�n

f(ck) for any c 2 S1 which is not a root of unity.

This is immediate from The Ergodic Theorem. Give a proof without using The
Ergodic Theorem.

By Stone-Weierstras Theorem ffj : j 2 Zg, where fj(z) = zj spans a dense
subspace of C(S1). Hence it su¢ ces to prove the result when f = fj for some

integer j. In this case
Z
fd� = 0 if j 6= 0 and 1 if j = 0. Let c = eia. Then a

2�

is irrational. Clearly 1
2n+1

nX
k=�n

f(ck) = 1
2n+1

nX
k=�n

cjk = 1
2n+1

nX
k=�n

eijka. Since

nX
k=�n

eikt =
nX
k=0

eikt +
�1X

k=�n
eikt = 1�ei(n+1)t

1�eit + e�it�e�(n+1)t
1�e�it which is bounded (

if cos t 6= 1 we see that 1
2n+1

nX
k=�n

f(ck)! 0 if cos ja 6= 1 which is true since a
2�

is irrational.
Remark: a more general result is the following: let G be a compact metric

group and Gn; n = 1; 2; ::: be an increasing sequence of closed subgroups whose
union is dense in G. Let �; �n be the Haar measures on G;Gn respectively. Sup-

pose characters on G span a dense subsapce of C(G). Then
Z
fd� = lim

Z
fd�n

for all f in C(G). In this case the character group is a countable orthonormal
sequence and it su¢ ces to prove that result when f is a character. In this case

both sides of the equation
Z
fd� = lim

Z
fd�n are 0 according if f 6= 1 and 1

if f = 1.

Problem 368

Let (X; �; �) be a compact Hausdor¤ group which is also a topological
semigroup: If left and right cancellation laws hold in X show that X is a topo-
logical group.

By Zorn�s Lemma there is a smallest non-empty closed set C such that
C �X � C. Note that C �X is closed, non-empty and (C �X) �X � C �X.
By minimality of C we get C = C �X. Let c 2 C. We claim that c �X = C.
First note that (c �X) �X � c �X and c �X � C �X � C. Minimality of C
shows C = c �X. Now, if x 2 X then c � x �X = C because c � x �X � C and
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c � x �X �X � c � x �X. Thus c � x �X = C = C �X. From this it follows that
x �X = X. [ y 2 X implies c � y 2 C �X = c �x �X so c � y = c �x � z for some
z which implies y = x � z 2 x �X proving that X � x �X]. From this it follows
by standard arguments that S is a group. xi ! x implies xi � x�1 ! e and
x�1i � xi � x�1 ! z � x � x�1 = z along a subnet with x�1i ! z. Thus x�1 = z
proving that the only accumulation point of fx�1i g is x�1. Hence x�1i ! x�1

and X is a topological group.

Problem 369

Does there exists a probability measure � on the Borel sigma �eld of R1
which is translation invaraint?

No! Let p1; p2; ::: be the projection maps. Choose positive numbers c1; c2; :::
such that �fjpj j > 1

2jcj
g < 1

2j . Then �fjpj j >
1

2jcj
in�nitely ofteng = 0 andX

cjpj converges almost surely. Let M = f(xj) 2 R1 :
X

cjxj convergesg.
M is a proper linear subspace and �(M) = 1. If x =2 M then x +M and M
are disjoint and these sets are also Borel sets. Hence they cannot have the same
measure.

Problem 370

Generalize Problem 369 by showing that no Borel probability measure on a
separable in�nite dimensional Frechet space (over R) can be translation invari-
ant.

Let � be a Borel probability measure on a separable in�nite dimensional
Frechet space X. There exist compact sets Kn; n = 1; 2; ::: such that �(Kn) >
1 � 1

n . We may suppose Kn � Kn+1. Let Mn be the space spanned by Kn.

Then Mn =

1[
k=1

f
kX
i=1

aixi : a
0
is 2 R; x0is 2 Kn; jaij � k 8ig =

1[
k=1

Mn;k where

Mn;k = f
kX
i=1

aixi : a
0
is 2 R; x0is 2 Kn; jaij � k 8ig. Note that Mn;k is compact.

[ It is a continuous image of [�k; k]k �Kk
n]. Now M �

1[
n=1

1[
k=1

Mn;k =
1[
n=1

Mn

is a linear subspace of X. It is a proper subspace by Baire Category Theorem.
[ Each Mn;k is closed and has empty interior.( By Theorem 1.22 of Rudin�s
Functional Analysis any locally compact t.v.s. is of �nite dimension. If Mn;k

has nonempty interior then, by translation, there is a compact set H such that

0 2 H0. But then X =
1[
n=1

nH0 which makes X locally compact]. Hence

�(M) = 1 and M is a proper subspace which implies that M and M +x cannot
have the same measure when x =2M (as in previous problem).
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Problem 371

Show that we cannot have identically distributed random variables X and
Y such that X < Y almost surely.

Let F be the common distribution. For any real number x we have PfY �
x;X < Y g = PfY � xg = F (x) and PfY > x; x < X < Y g = PfX > xg =
1 � F (x). Since fX � x < Y gc contains the disjoint union fY > x; x < X <
Y g[fY � x;X < Y g we get 1�PfX � x < Y g � 1�F (x)+F (x) = 1. Hence
PfX � x < Y g = 0 for every x. This is a contradiction.

Problem 372 [A characterization of conditional expectation operators]

Let T : L1 ! L1 be a continuous linear map with kTk = 1; T1 = 1 and
T (Y T (X)) = (TY )(TX) for all X 2 L1; Y 2 L1. [ L1 stands for L1(
;F ; P )
where (
;F ; P ) is a probabilty space]. Then there exists a sigma �eld G con-
tained in F such that TX = E(XjG) for all X 2 L1. The converse is also
true.

The converse part follows from standard facts about conditional expecta-
tions. Suppose now that T has the stated properties. Let M = fX 2 L1 :
TX = Xg. Let G be the sigma �eld generated by M (the smallest one which
makes eachX inM measurable). Claim: Y 2 L1 implies TY 2 L1. For this we
�rst verify that [T (Y )]n 2 L1 for each positive integer n. Indeed, Y and TY 2 L1
and if [T (Y )]k 2 L1 then [T (Y )]k+1 = [TY ][T (Y )]k = T [Y [T (Y )]k] 2 L1 be-
cause Y [T (Y )]k 2 L1. This proves that [T (Y )]n 2 L1 for each positive inte-

ger n. Now kTY knn =
Z
jT (Y )jn =

Z ��T [Y (TY )n�1]�� � Z ��Y (TY )n�1�� �
[

Z
jY jn]1=n[

Z
jTY jn]1�1=n which shows

Z
jT (Y )jn �

Z
jY jn. So kTY kn �

kY k1. Letting n ! 1 we get kTY k1 � kY k1 proving the claim. Now sup-
pose X 2 M . We claim that T (Xn) = Xn for all n. Indeed, if this holds
for n = k then T (Xk+1) = (TX)(TXk) = X(Xk) = Xk+1. It follows that
T (p(X)) = p(X) for any polynomial p. Approximating any continuous func-
tion on [�kXk1 ; kXk1] by polynomials we see that T (f(X)) = f(X) for any
continuous function f . From this it follows that T (f(X)) = f(X) for any
bounded B(R) meaurable f . [ There exist a sequence of continuous functions
ffng such that

Z
jfn � f j dP �X�1 ! 0. Since Tfn ! Tf in L1(P �X�1) we

get Tfn(X) ! Tf(X) in L1. There is a subsequence fnjg of the integers such
that Tfnj (X)! Tf(X) a.s. and fnj (X)! f(X) a.s. Since Tfnj (X) = fnj (X)
for each j we get T (f(X)) = f(X)]. We conclude that TY = Y for any G
meaurable Y . [ fE 2 G : TIE = IEg is a sigma �eld because T1 = 1 and
En # E implies TIEn ! TIE in L1. (Note that TIE = IE and TIF = IF
imply TIE\F = T (IEIF ) = T (IET (IF )) = (TIE)(TIF ) = IEIF = IE\F ). This
sigma �eld contains X�1(A) for any Borel set A in R because TIX�1(A) =
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TIA(X) = IA(X) = IX�1(A). Hence it contains the sigma �eld genertaed by
such sets which is G]. Of course T (T (X)) = T (1(T (X)) = (T1)T (X) = T (X)
so T 2 = T . Hence T (X) is G measurable for any X 2 L1. Now for X 2 L1 and

E 2 G we have IET (X) = T (IE)(TX) = T (XT (IE)) = T (XIE) so
Z
E

T (X) =Z
IET (X) =

Z
T (XIE) To complete the proof we show that

Z
T (X) =

Z
X

for any X 2 L1. This would give
Z
E

T (X) =

Z
T (XIE) =

Z
XIE =

Z
E

X

proving that TX = E(XjG). Consider the adjoint operator T � : L1 ! L1.

We have 1 =
Z
1T (1) =

Z
[T �(1)]1 � kT �1k � kT �k = kTk = 1 so equality

holds throughout. Hence T �1 = 1 which gives
Z
T (X) =

Z
XT �(1) =

Z
X for

any X 2 L1.

Problem 373
Let (
;F ; P ) be a probability space and G be a sub-sigma �eld of F . Let

M = fE(XjG) : X 2 L2g. Show that, 1 2M; M is a closed subspace of L2 and
that maxff; gg 2M whenever f and g 2M . Prove that any subspace M with
these properties coincides with fE(XjG) : X 2 L2g for some sub-sigma G �eld
of F .

Firts part is trivial since fE(XjG) : X 2 L2g is nothing but the set of all
those elements X of L2 which are G measurable. [ The fact that E(XjG) 2 L2
follows by Jensen�s inequality for conditional expectations]. Now supposeM has
the stated properties. Let G = fE 2 F : IE 2Mg. If IE 2M and IF 2M then
IE[F = maxfIE ; IF g 2M . Since 1 2M it follows immediately that G is a �eld.
If En " E and each En 2 G then IE is the L2 limit of fIEng � M and hence
E 2 G. Thus G is a sigma �eld. Since every simple function in L2(
;G; P )
belongs to M and M is closed it follows that every function in L2(
;G; P )
belongs to M: Let Y 2M and a 2 R. Then �maxf�1;minf0; n(Y � a)gg 2M

and �maxf�1;minf0; n(Y � a)gg !
�
0 if Y � a
1 if Y < a

. It follows, by Dominated

Convergence Theorem that IfY <ag 2 M . Hence fY < ag 2 G for every real
number a. Hence Y is G� measurable.

Problem 374

Let (
;F ; P ) be a probability space and G be a sub-sigma �eld of F . Let
X 2 L1 and suppose X and E(XjG) have the same distribution. Show that
X = E(XjG) a.s..
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Let Y = X+. We claim that Y and E(Y jG) have the same distribution.
Indeed, Y has the same distribution as (E(XjG))+ and (E(XjG))+ � E(Y jG)
with both sides having the same expectation. Hence (E(XjG))+ = E(Y jG) a.s.
which implies that Y = X+ and E(Y jG) have the same distribution. Since �X
and E(�XjG) have the same distribution we see that (�X)+ and E((�X)+jG)
have the same distribution. This means (X)� and E((X)�jG) have the same
distribution. If we prove the result for non-negative random variables we con-
clude that X+ = E(X+jG) a.s.. and X� = E(X�jG) a.s.. and hence that
X = E(XjG) a.s.. From now on we assume that X � 0. Let N be a posi-
tive integer and XN = minfX;Ng. We calim that XN and E(XN jG) have the
same distribution. For this note that E(XN jG) � minfE(XjG); Ng and both
sides have the same expectation so equality holds a.s.. Since minfE(XjG); Ng
has the same distribution as minfX;Ng = XN we see that XN and E(XN jG)
have the same distribution. If we prove the result for non-negative bounded
random variables we can conclude that E(XN jG) = XN a.s.. This is true for
each N and we get E(XjG) = X a.s. in the limit. We now assume that X
is positive and bounded. In this case (E(XjG))2 � E(X2jG) and both sides
have the same expectation. Hence (E(XjG))2 = E(X2jG) a.s.. This gives
E(X�E(XjG))2 = EX2+EX2�2EfXE(XjG)g = 2EX2�2EfE(XjG)g2 = 0
and so X = E(XjG) a.s.

Remark: compare with the following fact: if M is a closed subspace of a
Hilbert space H and P is the projection onto M then kxk = kPxk implies
x = Px. This is trivial and this gives above result when X 2 L2. Clearly the
�full force �of the hypothesis is not required in above proof.

Problem 375

Suppose G1 and G1 are sub sigma �elds of F where (
;F ; P ) is a given
probabilty space. Suppose X �E(XjG1) = E(XjG2) whenever X 2 L1(
;G; P )
and EX = 0 where G is the sigma �eld generated by G1 and G2 . Show that at
least one of the sigma �elds G1 and G1 is trivial w.r.t. P:
Motivation: if T is the projection of a Hilbert space onto a closed subspace

then I � P is always a projection.

Let A 2 G1 and B 2 G2. Putting X = IA[B � P (A [ B) we have IA[B �
E(IA + IB � IA\B jG1) = E(IA + IB � IA\B jG2) � P (A [ B). Hence IA[B �
IA �E(IB jG1) + IAE(IB jG1) = E(IAjG2) + IB � IBE(IAjG2)�P (A[B). If we
prove that G1 and G1 are independent we can conclude that IA[B�IA�P (B)+
IAP (B) = P (A) + IB � IBP (A) � P (A [ B). If P (AnB) > 0 we can evaluate
both sides on AnB to get 1� 1� P (B) + P (B) = P (A) + 0� 0� P (A [B) or
P (A[B) = P (A). This means P (BnA) = 0. We have proved that P (AnB) = 0
or P (BnA) = 0. Independence of A and B no shows that P (A) and P (B)
cannot both belong to (0; 1). [Note that if one of the sigma �elds G1 and G1 is
trivial then the stated identity indeed holds]. We now prove that G1 and G1 are
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independent. Put X = IA�P (A) where A 2 G1. We get 0 = E(IAjG2)�P (A).
Integrating over any B 2 G2 we get P (A \B) = P (A)P (B).

Problem 376

Let T be a unitary operator on CN such that for every positive integer n
there exists an positive integer k such that T kn is similar to T , i.e. there is
invertible operator S such that T kn = S�1TS. Show that T = I:

There is a basis consisting of eigen values so it su¢ ces to show that 1 is the
only eigen value of T . Let f�1; �2; :::; �Ng be the set of eigen values of T . Then
the equation T kn = S�1TS shows that f�1; �2; :::; �Ng = f�kn1 ; �kn2 ; :::; �knN g.
Each �i is of the type �

l
j for in�nitely many l (for some j) which implies that �j

and hence �i is a root of unity. There exists an integer m such that �mi = 1 for
each i. But then there exists k such that f�1; �2; :::; �Ng = f�mn1 ; �km2 ; :::; �kmN g
and since �kmj = 1 for all j we see that �i = 1 for all i.

Problem 377
LetG be a compact abelian group andH be a subgroup of the dual groupG^.

If  2 G^nH and � 2 M where M is the space of all �nite linear combinations
of elements of H show that L2(m) distance between  and � is not less than 1.
[m is the normalized Haar meaure on G]. Hence show that the only subgroup
of G^ which separates points of G is G^ itself.

Let � =
kX
j=1

cjj with 
0
js 2 H. We claim that

Z

�
jdm = 0 for each j. This

is because 
�
j is a character 0 not identically equal to 1 and 0(g0)

Z
0(g)dm(g) =Z

0(gog)dm(g) =

Z
0(g)dm(g) so

Z
0(g)dm(g) = 0. For the same reason

0js are orthogonal to each other (assuming, of course, that they are distinct).

Now k � �k22 = 1 +
kX
j=1

jcj j2 � 1. The second part now follows by an easy

application of Stone-Weierstrass Theorem: let Cb(G) be the Banach space of
bounded continuous complex functions on G with the supremum norm. If H
separates points so doesM; which is a subalgebra of Cb(G). FurtherM contains
constants and it is closed under conjugation. Hence M is dense in Cb(G). This
contradicts the �rst part if there is an element  in G^nH.

Problem 378

Let � be a complex Borel measure on R such that �(x + E) ! �(E) as
x! 0 whenever E is a compact set whose Lebesgue measure is 0. Show that �
is absolutely continuous w.r.t. Lebesgue measure.
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By regularity of � it su¢ ces to show that �(E) = 0. Let d�(x) = I(��;�)(x)dx.

Then (� � j�j)(E) =
Z
�(E � x)d j�j (x) = 0 since �(E � x) = 0 for all x. Hence

0 = 1
2�

Z
j�j (E�x)d�(x) = 1

2�

Z
j�j (E�x)I(��;�)(x)dx � 1

2�

Z
j�(E � x)j I(��;�)(x)dx!

j�(E)j as � ! 0.

Problem 379
Let M be a closed subspace of a real Hilbert space H and x 2 H with

� � d(x;M) > 0. For any m1;m2 2M prove that km1 �m2k � fkx�m1k2 �
�2g1=2 + fkx�m2k2 � �2g1=2

We have
x� 1

1�c (m1 � cm2)
2 � �2 if c 6= 1. Hence k(x�m1) + c(m2 � x)k2 �

j1� cj2 �2 and this last inequality holds for c = 1 also. Thus kx�m1k2 +
c2 kx�m2k2� 2c < x�m1; x�m2 >� (1� c)2�2. The validity of this for all c
implies that [< x�m1; x�m2 > ��2]2 � [kx�m1k2 � �2][kx�m2k2 � �2]. [
Take c = <x�m1;x�m2>��2

kx�m2k2��2
]. Finally, km1 �m2k2 = k(x�m1)� (x�m2)k2 �

kx�m1k2 + kx�m2k2 � 2 < x�m1; x�m2 >

� [kx�m1k2 ��2] + [kx�m2k2 ��2] + 2[kx�m1k2 ��2]1=2[kx�m2k2 �
�2]1=2 which gives the desired inequality.

Problem 380

Let K � C be a compact set such that the unbounded component of Kc

contains 0. Show that there is a simply connected open set 
 such that K � 

and there is an analytic branch of logarithm in 
:

Let cn ! 1; cn belonging to the unbounded component C of Kc. Let
c0 = 0. Since there are continuous paths from 0 to c1; c1 to c2 etc we can �nd a
continuous map  : [0; 1)! C such that (1� 1

n ) = cn for all n and  is linear
in [1� 1

n ; 1�
1

n+1 ] for each n . We claim that D � [0; 1)[f1g is connected in
the extended plane. If we can write D as the disjoint union of non-empty open
subsets U and V then the connected set [0; 1) is contained in either U or V .
Suppose it is contained in U . Then 1 2 V . Now [0; 1) � U � V c and V c is
closed. Since1 = lim cn = lim (1� 1

n ) it follows that1 2 V c, a contradiction.
This proves the claim. Let 
 = Dc. Then 
 is open, [ If f(tk)g converges in
C either ftkg ! 1 or ftkg has a subsequence converging to a point t of [0; 1).
In the �rst case lim (tk) =1 and in the second case lim (tk) = (t)]. Clearly
K � 
. Since 0 =2 
 we only have to show that 
 is simply connected. Its
complemenet in the extended complex plane is D which is connected.

Problem 381

Let g : [0; 1]! [0; 1] be a continuous map, X = C([0; 1]) and de�ne T : X !
X by Tf(x) = f(g(x)). For what continuous functions g is this map compact?
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We prove that T is compact if and only if g is a constant. If g is a constant
then T is compact because [0; 1] is compact. Suppose T is compact. Claim:
whenever tn ! t in [0; 1] we have g(tn) = g(t) for in�nitely many n. If the
claim is false there exists tn ! t with g(tn) 6= g(t) for all n su¢ ciently large,
say n � k. There exists functions fn; n = k; k + 1; ::: in X such that 0 � fn �
1; fn(g(tn)) = 0 and fn(g(t)) = 1. Then jTfn(tn)� Tfn(t)j = 1 for all n � k
which implies that fTfnjg is not equi-continuous in X whenever nj " 1. Thus
fTfng has no convergent subsequence which implies that T is not compact. We
have now proved the claim. To see why g must be a constant we just have to
observe that ft : g(t) = g(0)g is open and closed in [0; 1]. [ If g(tn) 6= g(0) for
all n and tn ! t then g(t) 6= g(0) by the claim so ft : g(t) 6= g(0)g is closed. Of
course ft : g(t) = g(0)g is closed by continuity].

Problem 382

Prove or disprove that any compact operator on X � Lp([0; 1]) (where 1 �
p <1) is a limit ( in operator norm) of �nite rank operators.

True. We �rst make some preliminary observations.
Fact 1: if T; Tn; n = 1; 2; ::: are bounded operators on a Banach space X

such that kTnx� Txk ! 0 for each x then kTnx� Txk ! 0 uniformly on
compact subsets of X: This follows from triangle inequality and the fact that
fkTnkg is bounded. [ For a convergent sequence fxng in the given compact
set kTnxn � Txnk � fsup kTnkg kxn � xk + kTnx� Txk+ kTkg kxn � xk so
Tnxn � Txn ! 0].
Fact 2: if fSng is a sequence of operators such that kSnx� xk ! 0 for each

x and if T is a compact operator on X then kSnT � Tk ! 0. This is immediate
from Fact 1.
Fact 3: let Gn be the sigma �eld generated by the sets [ i�12n ;

i
2n ); 1 � i < 2n.

Let Snf = E(f jGn) . Then the operators Sn satisfy the hypothesis of Fact 2
when X � Lp([0; 1]).
This is a standard result using uniform integrability of fE(f jGn)g for �xed

f .
It follows from Fact 2 that if T is compact then the �nite rank operators

SnT converge to T in operator norm.

Problem 383

Let T be a bounded operator on a Hilbert space H such that T 2 = T and
kTk = 1. Show that T is the projection onto its range.

Note that T (H) = fx 2 H : Tx = xg. Hence T (H) is closed. Let P be the
projection with range T (H). We have to show that x � T (x)?T (H) for which
it su¢ ces to show that T (H) � [ker(T )]?. Let y 2 T (H) and write y as y1 + y2
with y1 2 ker(T ) and y2 2 [kerT ]?. If we show that [kerT ]? � T (H) it would
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follow that y1 = y�y2 2 T (H) and this implies y1 = 0 and y = y2 2 [kerT ]?, as
required. It reamins to show that [kerT ]? � T (H). Let x 2 [kerT ]?nf0g. Then
0 =< x; x� Tx >= kxk2� < x; Tx > so kxk2 =< x; Tx >� kxk kTxk �

x2
which implies kTxk = kxk. Since < x; Tx >= kxk2 we get kx� Txk2 =
kxk2 + kTxk2 � 2 kxk2 = 0 and x = Tx 2 T (H).

Problem 384

If T is a compact operator on a Hilbert space H with an orthonormal basis
feng show that Ten ! 0 but the converse is false.

If T is of �nite rank than Tx =
NX
j=1

< x; xj > yj for suitable N;xj ; yj ; 1 �

j � N , so Ten ! 0. The general case follows from the fact that kT � Tnk ! 0
for some sequenec fTng of �nite rank opeartors. For the second part de�ne
T : l2 ! l2 by Ten = n�1=2e1 where feng is the standard basis of l2. Let

xN =
NX
j=1

ajej where aj = j�1=2=a and a = (
NX
j=1

j�1)1=2. Then kxNk2 = 1 for

all N and T (xN ) = (
NX
j=1

ajj
�1=2)e1 =

vuut NX
j=1

1
j e1. Thus T is not compact.

Problem 385 [Wilansky]

Let X be a real normed linear space and T : X ! X be an additive map. If
supfkTxk : kxk < 1g <1 show that T is a bounded linear map. What happens
if the hypothesis supfkTxk : kxk < 1g < 1 is changed to supfkTxk : kxk =
1g <1?

Fix x with kxk < 1 and de�ne � : R ! X by �(a) = T (ax) � aT (x). �
is an additive map so �(ra) = r�(a) if r is rational. Since �(1) = 0 we get
�(r) = 0 for all r rational. Note also that k�(a)k < 2M for 0 � a < 1 where
M is the supremum in the statement of the problem. If r is a positive rational
and a is any real number we can �nd a rational s such that 0 � ra + s < 1.
We now have k�(ra+ s)k < 2M . But �(ra + s) = r�(a) + �(s) = r�(a) + 0
so k�(a)k < 2M=r. Letting r ! 1 we get �(a) = 0 which gives T (ax) =
aT (x) if a 2 R and kxk < 1. Now let y 2 X and a 2 R. We have T (ay) =
T (f2a kykg y

2kyk ) = 2a kykT (
y

2kyk ) = aT (f2 kykg y
2kyk ) = aT (y). We have proved

that T is a linear map and boundedness follows immediately. This is Wilansky�s
proof. Here is an alternative proof: �x x0 6= 0 and x� 2 X� and consider the
map a! x�(T (ax0))� ax�(T (x0)). This map from R into itself is additive and
vanishes at 1. It is bounded on fa : jaj < 1= kx0kg. These facts imply that
it vanishes identically. It follows that x�(T (ax0)) = ax�(T (x0)). Since x� is
arbitrary this givesT (ax0) = aT (x0) 8a 2 R. Thus T is linear and bounded.
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The case X = R shows that T additive and supfkTxk : kxk = 1g <1 does
not imply that T is linear.

Problem 386

Let M be a closed subspace of a real Banach space X and � : X ! XjM be
the quotient map. When is � a closed map?

We claim that � is not closed ifM 6= f0g. [ IfM = f0g then � is closed]. Let
x1 be a unit vector inM and x2 be a unit vector not inM: Let C = fax1+bx2 :
a; b 2 R; ab = 1g. Using linear independence of x1 and x2 it is easy to see that
C is closed. [ ax1+bx2 ! a and ax1+bx2 ! b are well-de�ned linear maps on a
�nite dimensional space, hence continuous]. Note that �(C) = fbx2+M : b 6= 0g
which is not closed since it contains f 1nx2 +Mg which converges to the zero
element of XjM which does not belong to �(C).

Problem 387

Let X be a compact Hausdor¤ space and Y be a closed susbset of X: Let
M = ff 2 C(X) : f = 0 on Y g. Show that C(X)jM is isometrically isomorphic
to C(Y ).

De�ne T : C(X)jM ! C(Y ) by T (f+M) = fY where fY is the restriction of
f to Y . If f 2M then fY = 0 so T is a well-de�ned linear map. Tietze Extension
Theorem shows that T is onto. T is obviously one-to-one. We now show that
kf +Mk = kfY k. Since kf + gk � supfjf(x) + g(x)j : x 2 Y g = kfY k for
all g 2 M it follows that kf +Mk � kfY k. Now let " > 0 and U = fx :
jf(x)j < kfY k+ "g. U is open and Y � U . There exists a continuous function
g : X ! [0; 1] such that g = 0 on Y and g = 1 on U c. Now kf +Mk � kf + gk.
On Y jf(x)� f(x)g(x)j � kfY k. If x 2 U c then jf(x)� f(x)g(x)j = 0. Let
x 2 UnY . Since 0 � 1� g � 1 we have jf(x)� f(x)g(x)j � jf(x)j < kfY k+ ".
Thus kf � fgk < kfY k+ ". Since fg 2M we get kf +Mk < kfY k+ ":

Problem 388

Let K be a compact subset of C with non-empty interior. Let A(K) = ff 2
C(K) : f 2 H(K0)g where K0 is the interior of K and H(K0) is the space of
all holomorphic functions on K0. If z 2 K show that f(z) =

R
fd�; f 2 A(K)

for some probability measure � on @K.

If z 2 @K take � to be �z. Suppose z 2 K0. Then jf(z)j � supfjf(�)j : � 2
@(K0)g by Maximum Modulus Theorem. Let M = ff 2 C(@K) : f extends to
an element of A(K)g. The map f 2M ! f(z) 2 C is a well-de�ned continuous
linear functional since the extension of elements of M is unique. The norm
of this functional does not exceed 1. [ Let C be the connected component of
K0 containing z. Then @C � @K0 � @K so the values on @K determine
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values on @C; hence in C]. By Hahn-Banach Theorem we can extend this to a
continuous linear functional on C(@K). Hence there exists a complex measure
� on @K such that f(z) =

R
fd� for all f 2 M . Clearly k�k � 1. This fact

and the fact �(@K) = 1 together imply that � is a positive measure ( hence a
probability measure). [ d� = hd j�j with jhj = 1 a.e. [j�j] and 1 =

R
hd j�j so

1 =
R
Rehd j�j �

R
1d j�j = 1 so Reh = 1 = jhj a.e. [j�j] which implies h = 1

a.e. [j�j] and � = j�j].

Problem 389

Let X be a Banach space and T : X ! X be a linear map such that T 2 = T
and the null space and range of T are both closed. Show that T is continuous.

Let M = T�1f0g and N = T (X). By hypothesis M and N are closed
subspaces. Since x = (x�Tx)+Tx we have X =M+N . FurtherM\N = f0g.
This implies that the projection mapsM+N !M andM+N ! N have closed
graphs and hence are continuous. [ Suppose, for example, fxng � M; fyng �
N;xn+yn ! x+y ( with x 2M;y 2 N) and xn ! z. Then yn ! x+y�z. Hence
x+y�z 2 N . But then x�z 2 N where as x and z 2M so x�z 2M\N = f0g.
Thus z = x which is the projection of x+y onM ]. If xn ! x then the projection
of xn on N is Txn and that of x is Tx so Txn ! Tx.

Problem 390

Give a simple proof of the following fact without using Egoro¤�s Theorem:
if fn ! f a.e. and kfnkp ! kfkp <1 then kfn � fkp ! 0.

Proof due to Novinger: 2p[jfnjp+ jf jp]�jfn � f jp ! 2p+1 jf jp and 2p[jfnjp+
jf jp]� jfn � f jp � 0. Just apply Fatou�s Lemma.

Problem 391

Show that c is not isometrically isomorphic to c0.

We show that the closed unit ball of c has extreme points, but that of c0 has
none. Let fang be in the closed unit ball of c0 and choose N such that janj < 1

2
for n � N . Let xn = yn = an for n = 1; 2; :::; N � 1; xn = an + 2

�n(n � N)
and yn = an � 2�n(n � N). Then fang = 1

2fxng +
1
2fbng and fxng; fyng are

in the closed unit ball. Thus there are no extreme points in the unit ball of
c0. However (1; 1; :::) is an extreme point in the unit ball of c since (1; 1; :::) =
tfxng+(1� t)fyng implies 1 = txn+(1� t)yn � t+(1� t) = 1 and xn = yn = 1
for all n if 0 < t < 1 and fxng; fyng belong to the unit ball.

Problem 392
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Find extreme points of the closed unit ball � of Lp(�); 1 � p <1:

If 1 < p <1 then f 2 � is an extreme point of � if and only if kfkp = 1.
Proof: of course, only if holds. Suppose kfkp = 1. Suppose f = tg+(1� t)h

with 0 < t < 1 and g; h 2 �. It is obvious that kgkp = 1 and khkp = 1.
Now 1 =

R
jf jp =

R
jtg + (1� t)hjp �

R
[t jgj + (1 � t) jhj]p �

R
[t jgjp + (1 �

t) jhjp] = t + (1 � t) = 1 where we have used the fact that a ! ap is convex
on [0;1). Since a ! ap is strictly convex it follows that jgj = jhj a.e.. Since
jtg + (1� t)hj = t jgj+ (1� t) jhj a.e. we get g = h a.e.
If p =1 then f 2 � is an extreme point if and only if jf j = 1 a.e.
Proof: suppose jf j = 1 a.e.. If f = tg + (1 � t)h with kgk1 � 1 and

khk1 � 1 then 1 = jf j � t jgj + (1 � t) jhj � t + (1 � t) = 1 so jgj = 1 = jhj
a.e. Since jtg + (1� t)hj = t jgj + (1 � t) jhj a.e. we get g = h a.e.. Now
suppose E = fx : jf(x)j < 1� �g has positive measure for some � > 0. We have
f = 1

2 [f(f+�)IE+fIEcg+f(f��)IE+fIEcg] and the functions (f+�)IE+fIEc

and (f � �)IE + fIEc belong to �. It follows that if f is an extreme point then
E has measure 0 for each � > 0 which means jf j = 1 a.e.
If p = 1 then f 2 � is an extreme point if and only if f = eia IA

�(A) for some
�� atom A and some real number a.

Proof: let kfk1 = 1. For any measurable set A such that 0 <
R
A
jf j < 1

we have f =
R
A
jf j fIAR

A
jf j +

R
Ac jf j fIAcR

Ac
jf j which shows that f is not an extreme

point. Hence, if f is an extreme point then
R
A
jf j = 0 or 1 for every measurable

set A: Let A = ff 6= 0g. If this set ( of positive measure) has a subset B with
0 < �(B) < �(A) then

R
B
jf j 2 (0; 1), a contradiction. Thus, A is necessarily an

atom. This implies that f is almost everywhere constant on A. Hence f = cIA
for some constant c. Since kfk1 = 1 we have jcj�(A) = 1. This proves the �only
if �part. Now suppose f = eia IA

�(A) for some �� atom A and some real number
a. Suppose f = tg+(1� t)h with 0 < t < 1 and kgk1 = khk1 = 1. Since A is an
atom, g and h are constants on A. Since 1 =

R
jf j � t

R
jgj+(1�t)

R
jhj � 1 and

1 =
R
A
jf j � t

R
A
jgj+ (1� t)

R
A
jhj � 1 we see that

R
A
jgj =

R
jgj ;

R
A
jhj =

R
jhj

(i.e. g = h = 0 on Ac) and the constants g and h are such that g=h is non-
negative and since jgj = jhj = 1

�(A) we get g = h a.e.

Problem 393

Let X be a Banach space and T be a bounded operator on it. Show thatX
n

kTnxk < 1 for all x 2 X if and only if there is a positive integer N such

that
TN < 1:
We give the proof assuming that X is a complex Banach space. The real

case can be hndled by complexi�cation. [ See Schechter, Principles of Functional
Analysis]. If

TN < 1 then any positive integer n can be written as Nk+j with
0 � j < N; k 2 f0; 1; 2; :::g. We have kTnxk =

TNk+jx � TNkmaxfT l :
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0 � l < Ng. As n ! 1; k ! 1 too and since
TN < 1 it follows thatX

n

kTnxk < 1. Conversely let
X
n

kTnxk < 1 for all x. Let j�j � 1. If

Tx = �x; x 6= 0 then
X
n

j�jn kxk <1 a contradiction. Hence T � �I is one-to-

one. To prove that it is onto we de�ne xn = 1
�Txn�1 +

1
�u for n � 1 where x0

and u are �xed vectors in X. Note that xn = 1
�nT

nx0 +
n�1X
j=0

1
�j+1

u. The series

1X
j=0

1
�j+1

u converges and 1
�nT

nx0 ! 0 because
X
n

kTnx0k < 1. Hence fxng

converges. Let x = limxn. Then x = 1
�Tx +

1
�u which says Tx � �x = �u.

Since u is arbitrary we have proved that T � �u is onto. By oopen mapping
theorem T � �I is invertible. Thus j�j � 1 implies � =2 �(T ). It follows that
�(T ) is a compact subset of f� 2 C : j�j < 1g and hence the spectral radius � of
T is less than 1. By the spectral radius formula we see that kTnk < 1 for some
n.
Remark: if X is �nite dimensional then the two equivalent conditions above

are equivalent to the condition Tnx! 0 for each x. To see this let fej : 1 � j �

Ng be a basis. Then

Tn(
NX
j=1

xjej)

 =

NX
j=1

xjT
nej

 �
vuut NX

j=1

jxj j2
vuut NX

j=1

kTnejk2.

Thus Tnx! 0 for each x implies kTnk ! 0, which implies that the equivalent
conditions above hold. Of course

X
n

kTnxk < 1 for all x 2 X implies that

Tnx! 0 for each x and the three conditions are all equivalent.

Problem 394
Let X be a Banach space and T a bounded self-adjoint operator with kTk �

2. Show that there exist unitary operators U and V such that T = U + V .

The closed sub-algebra of B(X) generated by I and T is a commutative C�

algebra with identity.[ This is the closure of the set of all polynomials in T ].
Hence it is isometrically � - isomorphic to C(�) for some compact Hausdor¤
space �. It su¢ ces to show that if f is a real valued function in C(�) with
kfk1 � 2 then there exist g; h 2 C(�) such that f = g + h and 1 = jg(x)j =
jh(x)j for all x 2 �. We just have to take Re g(x) = Reh(x) = f(x)

2 and

Im g(x) = � Imh(x) =
q
1� f f(x)2 g2 to complete the proof.

Problem 395

Let A be a complex algebra with a multiplicative unit e. Let a 2 Cnf0g. If
ae� xy is invertible show that ae� yx is also invertible. Is this true for a = 0?:
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If x or y is invertible show that ae�xy and ae�yx are simultaneously invertible
or non-invertible (for any a 2 C)

Let a 6= 0 and c = (ae � xy)�1. Then (ae � yx)(ycx) = aycx � yxycx =
y(ae � xy)cx = yx so (ae � yx)(e + ycx) = ae � yx + yx = ae. Similarly
(ycx)(ae� yx) = aycx� ycxyx = y(ae� xy)cx = yx and (e+ ycx)(ae� yx) =
ae � yx + yx = ae. It follows that (e � yx)�1 = a�1(e + ycx). If a = 0 this
is false: xy may be invertible without yx being so. For example in B(l2) let
Tfang = (0; a1; a2; :::) and Sfang = (a2; a3; :::). Then ST = I but TS is not
surjective. Suppose x and ae � xy are invertible. If a = 0 then y is invertible
and so is yx. If a 6= 0 then the �rst part can be applied. Similar argument
shows that if y and ae� xy are invertible so is ae� yx.

Problem 396
Give an example of two non-negative de�nite matrices A and B (over C)

such that AB is not non-negative de�nite.

Let A =

�
4 2
2 1

�
and B =

�
4 �2
�2 1

�
. Then AB =

�
12 �6
4 �3

�
.

The quadratic forms corresponding to A and B are j2x+ yj2 and j2x� yj2
respectively: AB is not even self adjoint.

Problem 397

Let S : l2 ! l2 be de�ned by Sfa1; a2; :::g = f0; a1; a2; :::g. If T : l2 ! l2 is
a linear map such that TS = ST then T is continuous.
We claim that (Tx)j ( the j�th coordinate of Tx) depends only on x1; x2; :::; xj .

In fact Tx = x1Te1 + x2Te2 + :::+ xjTej + T (0; 0; :::0; xj+1; xj+2; :::). The last
term is TSj(xj+1; xj+2; :::) = SjT (xj+1; xj+2; :::) and hence its �rst j coordi-
nates are 0. This proves the claim. Note that (Tfx1; x2; :::g)j = (Tfx1; x2; :::; xj ; 0; 0; 0; :::g)j =
jX
i=1

xi(Tei)j . Continuity of T now follows easily by The Closed Graph Theorem.

Remark: (Tei)j = (Te1)j�i+1 for each i; j with i � j and (Tei)j = 0 if i > j.
To see this just note that (Tei)j = (TSi�1e1)j = (Si�1Te1)j = (Te1)j�i+1 if
i � j and 0 otherwise. [ The identity (Tei)j = (Te1)j�i+1 is trivial if i = 1 so we
have assumed above that i > 1]. Thus Te1 determines T completely. However
Te1 cannot be an arbitrary element of l2. For characterization of operators that
commute with S see Hilbert Space Problem Book by Halmos, for example. If
Ufang = f0; �1a1; �2a2; :::g where �n > 0 for all n and f�ng is bounded then
any linear map that commutes with U is continuous, by the same argument.

Problem 398
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Let � : C ! C be a continuous function, C being the Cantor ternery
set. Show that there exists a Borel measurable map � : �(C) ! C such that
�(�(z)) = z for all z 2 �(C).
Remark: this follows from fron general theorems on Borel cross sections (cf.

Topology by Kuratowski) but a direct elementary proof can be given.

De�ne �(z) = inffc 2 C : �(c) = zg. Clearly this is a well-de�ned map from
�(C) into C and �(�(z)) = z. To show that � is measurable we prove that it is
lower semi-continuous. Let zn ! z. Write lim inf �(zn) as lim �(znj ) for some
nj " 1. Then �(lim inf �(zn)) = lim�(�(znj )) = lim znj = z. By de�nition of �
this implies �(z) � lim inf �(zn) as required.

Problem 399

If X is a commutative C� algebra with unit and xx� = x�x does it follow
that we can write x as �(y) for some self adjoint vector y and a continous map
� : �(x)! C?
Remark: it is know that the answer is �yes � if X is the space of bounded

operators on a Hilbert space.

The answer is no: let X = C(T ) and x be the identity map : T ! C.
Suppose there exists a continuous map � : �(x)! C such that x = �(�) where
� is real valued. Since z = �(�(z)) for all z 2 T we see that � is a one-to-one
continuous map from T into R. There is no such map because the range, which
is a closed interval, becomes disconnected when one point is removed from it. [
��1 is automatically continuous].

Problem 400

Let f 2 L1(R) be an odd function. Show that supf

������
�Z
1

f̂(t)
t dt

������ : 1 < � <

1g <1.
Remark: this shows that Fourier transform from L1(R) into the space C0(R)

of continuous functions that vanish at1 is not onto. For example, if g(t) = 1
ln(t)

if jtj > 1 and g is continuous (real valued) on R then ig cannot be the Fourier
transform of an L1 function. [ An integrable function is odd if and only if its
Fourier transform if purely imaginary]

We have

�Z
1

f̂(t)
t dt =

�Z
1

1
t

R
e�itxf(x)dxdt =

�Z
1

�2i
t

1Z
0

sin(ty)f(y)dydt [ Us-

ing the fact that g is odd]. Hence

�Z
1

f̂(t)
t dt = (�2i)

1Z
0

�Z
1

sin(ty)
t dtf(y)dy. Since
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�Z
1

sin(ty)
t dt =

�yZ
y

sin(s)
s ds there exists a constant C 2 (0;1) such that

������
�Z
1

sin(ty)
t dt

������ �
C for all y 2 (0;1) and � 2 (1;1). Hence

������
�Z
1

f̂(t)
t dt

������ � 2C
1Z
0

jf(y)j dy.

Problem 401

Show that the operator S : l2 ! l2 be de�ned by Sfa1; a2; :::g = f0; a1; a2; :::g
has no square root in B(l2).

The adjoint W of S is de�ned by Wfxng = fx2; x3; :::g. If S has a square
root so does W . Suppose T 2 B(l2) with T 2 = W . Let M = T�1f0g. Then
M � W�1f0g = [e1], the one-dimensional space spanned by e1 = f1; 0; 0; :::g.
It follows that either M = f0g or it is one-dimensional. In the �rst case T
and W = T 2 are one-to-one. This is clearly false ( We1 = 0) so M is one-
dimensional. But M � [e1] so M = [e1]. Since T 2 = W and W is onto, so is
T . Let e1 = Tz. Of course, z 6= 0. Now Wz = T 2z = Te1 = 0 which implies
z = ce1 for some scalar c. Thus e1 = Tz = cTe1 = 0 a contradiction.

Problem 402 [Extending a metric]

Show that any metric on a subset can be extended to a metric on the big
set.

Let A � B and d be a metric on A. Fix A. De�ne D(x; y) = d(x; y) if x
and y 2 A; 1 if x and y are distinct points of BjA, 0 if x = y 2 BnA; 1 + d(u; x)
if x 2 A and y 2 BjA; 1 + d(u; y) if y 2 A and x 2 BjA: To prove triangle
inequality a number of cases have to be considered, but D is indeed a metric on
B which extends d.

Problem 403

Show that if a and b are elements in a Banach algebra with unit e then
ab� ba 6= e.

Suppose ab� ba = e. We prove by induction that anb� ban = nan�1. This
is true for n = 1. Suppose anb�ban = nan�1 for n � m. Then am+1b�abam =
mam and amba� bam+1 = mam. Adding these we get am+1b� abam + amba�
bam+1 = 2mam. Note that amba � abam = a[am�1b � bam�1]a = a[(m �
1)am�2]a = (m�1)am. Hence am+1b+(m�1)am�bam+1 = 2mam. This gives
am+1b � bam+1 = (m + 1)am. This completes the induction argument. Now
kanb� bank = n

an�1. Since kanb� bank � an�1 kabk + kbakan�1 we
get n

an�1 � 2 kak kbkan�1. This implies that an�1 = 0 for n > 2 kak kbk.
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However the equation anb� ban = nan�1 shows that an�1 = 0 whenever an = 0
and n � 2. It follows that a = 0 which leads to the contradiction e = ab�ba = 0.
Remark: in the case of B(X) where X is �nite dimensional there is a onle

line proof: ab and ba have the same trace so dim(X) = tr(e) 6= 0 = tr(ab� ba)

Problem 404
Brouwer�s Fixed Point Theorem says that any continuous map from the

closed unit ball of Rn (or Cn) has a �xed point. Does this extend to in�nite
dimensional normed linear spaces?

No. Let � be the closed unit ball of l2 and de�ne f : � ! � by f(x) =

(

q
1� kxk2; x1; x2; :::). If f(x) = x then xn+1 = xn for all n which implies

xn = 0 for all n. But then 1 =
q
1� kxk2 6= 0 = x1.

Problem 405

Does there exist a strictly increasing absolutely continuous function on [0; 1]
whose derivative vanishes on a set of positive measure?

Yes. There exists a set E � [0; 1] such that 0 < m(E \ I) < m(I) for every
open interval I � [0; 1]. [ Start with a Cantor like set of positive measure;
in each of the intervals that you remove construct another Cantor like set of
positive measure; repeat this process and take the union of all the Cantor like

sets that you have constructed]. Let f(x) =

1Z
0

IE(x)dx. Then f has the required

properties.

Problem 406

Let f : [a; b] ! R be a measurable function. Show that f is approximately
continuous almost everywhere in the following sense: there is a null set E such
that for each x 2 [a; b]nE there exists a set Ax containing x such that the
restriction of f to Ax is continuous at x and m[(x��;x+�)\Ax]

2� ! 1 as � ! 0.

Let " > 0. By Lusin�s Theorem there exists a continuous function g such
that mfy : f(y) 6= g(y)g < ". Now almost all points of fy : f(y) = g(y)g have
density 1. Let A be the set of all points of fy : f(y) = g(y)g of density 1. If
x 2 A and f(x) = g(x) then the restriction of f to A is continuous at x ( by
continuity of g) and m[(x��;x+�)\A]

2� ! 1 as � ! 0. It follows that there is a
set whose measure is < " such that for almost every point x in the complement
the conclusion holds. Hence the set of points at which the conclusion does not
hold is contained in set whose measure is < ": Since " is arbitrary the proof is
complete.
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Problem 407 [This is same as Problem 23 but the solution is di¤erent]

Let f : [0; 1] ! R be a function such that for every " > 0 there exists
� > 0 with the property that for any �nite number of intervals (ai; bi) withX
(bi � ai) � � we have

���Xff(bi)� f(ai)g
��� < ". Show that f is Lipschitz.

Remark: the hypothesis becomes stronger if we replace
���Xff(bi)� f(ai)g

��� <
" by

X
jf(bi)� f(ai)j < ". Thus if we omit disjointness of the intervals in the

de�nition of absolute continuity we get a Lipschitz function.

Proof: take " = 1. Given a < b consider the interval (a; b) repeated N
times where N = [ �

b�a ]. We get N jf(b)� f(a)j < 1. If b � a < �=2 we get

jf(b)� f(a)j < 1
N < 1

�
b�a�1

= b�a
��(b�a) <

2(b�a)
� . For arbitrary a < b we can

�nd points ftig such that a = t1 < t2 < ::: < tk = b and ti+1� ti < �=2 for each
i. We get jf(b)� f(a)j �

X
jf(ti+1)� f(ti)j <

X
2(ti+1�ti)

� = 2(b�a)
� .

Problem 408

Prove or disprove that if two functions from [0; 1] to R map null sets to null
sets the so does their sum? What about the product?

Both are false. Let � : C ! C � C be a continuous surjective map. [ For
example

X
an
3n ! (

X
a2n�1
3n ;

X
a2n
3n ) is one such map]. Write � as (f; g) so

that f and g map C into C. Extend f and g to continuous functions on [0; 1]
by making then linear on the intervals removed in the construction of C. Since
linear maps map null sets to null sets it is easy to see that f and g do the same.
If x 2 [0; 2] then there exist x1; x2 2 C such that x = x1 + x2. Since � is onto
there exists t 2 C such that (f(t); g(t)) = �(t) = (x1; x2). Thus f(t)+ g(t) = x.
We have proved that f + g maps C onto [0; 2] so it does not map null sets to
null sets. Also, ef and eg map null sets to null sets ( because ex is Lipschtz)
and (efeg)(C) = ef+g(C) = e(f+g)(C) = e[0;1] = [1; e] so the product efeg does
not map null sets to null sets.

Problem 409
Let f : R! R and consider the following properties of f :
a) f has intermediate value property (ivp), i.e. a < b and f(a) < y < f(b)

or f(b) < y < f(a) implies there exists c 2 (a; b) such that y = f(c)
b) a < b implies f([a; b]) is an interval
c) f maps intervals to intervals
d) a < b implies f((a; b)) is an interval
Are these conditions equivalent?

It is easy to see that a), b) and c) are equivalent and that a) implies d). d)
does not imply the other conditions: let f(x) = 0 for x < 0; 1 for x = 0 and
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sin( 1x ) for x > 0. Take a = �1; b = 0; y =
1
2 to see that a) fails. Using the fact

that 0; 1 2 f(0; ") for any " > 0 it easy to see that a) holds.

Problem 410

Let f : R ! R be continuous and E be a meaurable set. Suppose f 0(x)
exists for each x 2 E. Show that f(E) is Lebesgue measurable and m(f(E)) �Z
E

jf 0(x)j dx.

See problem 411 for an important application of this problem.

We use Vitali�s Theorem [ Ref: p. 177 of Cohn�s Measure Theory]. We �rst
prove that m(f(E)) � Mm(E) if jf 0(x)j � M on E: Let " > 0 and x 2 E. If
f 0(x) > 0 then there exists hx > 0 such that f(x) � f(x+h) � f(x)+(M +")h
for 0 � h � hx and jf(x+ h)� f(x)j � (M+") jhj for �hx � h � 0. Similarly if
f 0(x) < 0 then there exists hx > 0 such that f(x) � f(x�h) � f(x)+(M +")h
for 0 � h � hx and jf(x+ h)� f(x)j � (M + ") jhj for �hx � h � 0. If
f 0(x) = 0 we choose hx > 0 such that jf(x+ h)� f(x)j < "=2 for jhj � hx.
Let U be an open set such that E � U and m(U) < m(E) + ". We may also
assume that (x � hx; x + hx) � U for each x 2 E. Using the numbers hx it
is easy to see that we can cover f(E) by a collection of closed intervals such
that for each f(x) in f(E) and each � > 0 there is an interval in this collection
with f(x) as one of the end points whose length is less than � and the other
end point belongs to f(E) . By Vitali�s Theorem there is a countable disjoint
sub-collection I1; I2; ::: such that f(E)n(I1 [ I2 [ :::) is a null set. This gives
m(f(E)) �

X
m(In). Let the end points of Ij be f(xj) and f(yj). We can

ensure that [xj ; yj ] � U for all j; f([xj ; yj ]) � Ij and m(Ij) � (M + ") jyj � xj j.
Thus m(f(E)) � (M + ")

X
jyj � xj j. Since the images of the intervals [xj ; yj ]

are disjoint so are these intervals. Hence m(f(E)) � (M + ")m(U) < (M +
")(m(E) + "). Letting " ! 0 we get m(f(E)) � Mm(E). We have proved
that m(f(E)) � Mm(E) if jf 0(x)j � M on E: By decomposing E into the
sets E \ ftj�1 � jf 0(x)j < tjg where t0js form a partition of [0;1) we see that

m(f(E)) �
Z
E

jf 0(x)j dx. Measurabilty of f(E) is easy since f maps null sets to

null sets.

Problem 411
A function f : [0; 1] ! R is absolutely continuous if and only if it is a

continuous function of bounded variation and maps null sets to null sets.

If f is absolutely continuous then it is a continuous function of bounded
variation and maps null sets to null sets. To prove that f maps null sets
to null sets we �rst prove that given " > 0 there exists � > 0 such that
for any �nite disjoint collection of open intervals (a1; b1); (a2; b2); :::; (ak; bk)
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with
P
(bj � aj) < � we have

P
supfjf(t)� f(s)j : s; t 2 [aj ; bj ]g < ". In-

deed supfjf(t)� f(s)j : s; t 2 [aj ; bj ]g = jf(vj)� f(uj)j for some uj ; vj 2
[aj ; bj ]. Note that jvj � uj j � bj � aj we have

P
jvj � uj j < �. The inter-

vals (uj ; vj) or (vj ; uj) are contained in (aj ; bj) and hence they are disjoint.
Hence, if � = �(") is chosen as in the de�nition of absolute continuity we getP
supfjf(t)� f(s)j : s; t 2 [aj ; bj ]g =

P
jf(vj)� f(uj)j < ". Now letm(E) = 0

and choose disjoint open intervals (a1; b1); (a2; b2); ::: such that E �
[
(aj ; bj)

and
P
(bj � aj) < �. Then f(E) �

[
f((aj ; bj)) and

P
m(f((aj ; bj)) =P

fmax f([aj ; bj ] � min f([aj ; bj ]g �
P
supfjf(t)� f(s)j : s; t 2 [aj ; bj ]g < ".

This completes the �only if�part. Now suppose f is a continuous function of
bounded variation and maps null sets to null sets. Since functions of bounded
variation are di¤erentiable a.e. there is a null set A such that f is di¤erentiable

at each point of E if S � Ac. By previous problem m(f(E)) �
Z
E

jf 0(x)j dx.

Now jf(b)� f(a)j � m(f([a; b]) = m(f(Ac \ ([a; b])) �
Z

Ac\([a;b])

jf 0(x)j dx �

Z
([a;b])

jf 0(x)j dx which clearly implies absolute continuity of f . [ In the equality

above we have used that fact m(f(A \ ([a; b])) � m(f(A)) = 0].

Problem 412

Let f : [0; 1]! R be absolutely continuous with f 0(x) > 0 a.e.. Then f�1 is
absolutely continuous on [f(0); f(1)]:

We �rst show that if f : [0; 1] ! R, E = fx : f 0(x) exists and is non-zerog
and if m(A) = 0 then m(f�1(A) \ E) = 0.
A corollary of this is the following:
Let f : [0; 1] ! R and E � fx : f 0(x) exists and is non-zerog. If f(E) is a

null set then so is E.
(Proof just take A = f(E)).
Let F = fx : f 0(x) exists and f 0(x) > 1g. For any rational number r we

de�ne Fr = fx 2 F : f(y)�f(x)y�x > 1 for all y 2 [r; x)g. Let B be the set of
points of F0 at which F0 has density 1. [ m(F0nB) = 0 so B is dense in F0].
Claim: f is increasing on B. Let x1 < x2 with x1; x2 2 B. Since x1 2 [0; x2)
and x2 2 F0 we have

f(x1)�f(x2)
x1�x2 > 1. Hence f(x1) < f(x2). This proves the

claim. Let " > 0 and U be an open set containing A such that m(U) < ". If
x 2 B \ f�1(A) then there exists a sequence of intervals Ux;n = (x� rn; x+ rn)
such that rn ! 0 (r0ns depend on x); x � rn 2 B; (f(x � rn); f(x + rn)) � U
and f(x+ rn)� f(x� rn) > 2rn. [ Since x 2 B we have f(x)� f(x� rn) > rn
and since x+ rn 2 B we have f(x+ rn)� f(x) > rn]. The intervals fUx;n : x 2
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B \ f�1(A); n � 1g form a Vitali cover of B \ f�1(A). Hence there is a disjoint
sequence f(x�rn; x+rn)g from the collection such thatm(B\f�1(A)) �

P
2rn.

But (f(xn � rn); f(xn + rn)) � U and the intervals (f(xn � rn); f(xn + rn))
are also disjoint so m(B \ f�1(A)) < ". This proves that m(F0 \ f�1(A)) = 0.
Similarly m(Fr \ f�1(A)) = 0 for each r which implies m(F \ f�1(A)) = 0.
Also the inequlaity f 0(x) > 1 can be replaced by f 0(x) > 1=n and also by
f 0(x) < �1=n hence m(E \ f�1(A)) = 0.
Next we prove the following:
Let f : [0; 1]! R and E � fx : f 0(x) existsg: Then f(E) is a null set if and

only if f 0 = 0 a.e. on E.
Proof: The inequality m(f(E)) �

R
E
f 0(x)dx ( see Problem 410) proves that

�if �part. If f(E) is a null set then above result implies that f 0 = 0 a.e. on E.

Now note that f(x) = f(0)+

xZ
0

f 0(t)dt so f is strictly increasing. Hence f�1

exists. Now f�1 is continuous and strictly increasing. If E � fx : f 0(x) > 0g is
measurable then (f�1)0 exists on E. If m(E) > 0 the it is not true that f 0 = 0
a.e. on E and hencem(f(E)) > 0 by above corollary. Thusm(f(E)) = 0 implies
m(E) = 0. Since f is a homeomorphism this is equivalent to the statement
m(E) = 0) m(f�1(E)) = 0. But any continuous function of bouded variation
which maps null sets to null sets is absolutely continous so f�1 is absolutely
continuous.

Problem 413

Let F be a continous singular probability distribution function. Show that
there is a set E of measure 0 such that F (E) has positive measure.

By Problem 410 m(F (fx : F 0(x) = 0g)) = 0. Let S = fx : F 0(x) = 0g. Then
m(F (S)) = 0 and hence m(F (Sc)) > 0. Take E = Sc.

Problem 414

Give an example to show that composition of two absolutely continuous
functions need not be absolutely continuous.

Let f(x) = x2 sin2( �2x ); x 6= 0; f(0) = 0 and g(x) =
p
x. Then f and g

are both absolutely continuous on [0; 1]. f is absolutely continuous because

jf 0(x)j � 2 + � for all x. g is so because 1
2
p
x
2 L1([0; 1]) and

xZ
0

1
2
p
ydy = g(x)

for all x. We prove that g � f is not of bounded variation on [0; 1]. This implies

that g � f is not absolutely continuous. Consider
1X
n=1

���g(f( 1n ))� g(f( 1
n+1 ))

��� =
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1X
n=1

��� 1n sin(n�2 )� 1
n+1 sin(

(n+1)�
2 )

��� =1 because
��� 1n sin(n�2 )� 1

n+1 sin(
(n+1)�

2 )
��� =

1
n if n is odd and

1
n+1 if n is even.

Problem 415

Let f 2 L1([0; 1]). Given " > 0 show that there is a continuous function g
such that g0(x) exists and equals f(x) almost everywhere, jg(x)j < " for all x
and g(0) = g(1) = 0.

Let �(x) =

xZ
0

f(t)dt. There is a partition ftig1�i�k of [0; 1] such that the

oscillation of � on [ti�1; ti] is less than " for each i. There exists a continuous
singular function hi on [ti�1; ti] such that hi(ti�1) = �(ti�1) and hi(ti) = �(ti):
[ If �(ti�1) 6= �(ti) we can take any continous singular function on � on [ti�1; ti]
and take hi = �� + � for suitable � and �. Otherwise we can take hi(x) =
c+�((x�ti�1)(ti�x)) where � is a continuous singular function on [0; ( ti+ti�12 )2]
and c = h(ti) � �(0)]. Clealry we can �patch up �h0is into a single continuous
singular function h. Let g = �� h. Then g0 = f a.e. and g(0) = �(0)� h(0) =
0; g(1) = �(1)�h(1) = 0. Now let ti�1 � x � ti. Then jg(x)j = j�(x)� h(x)j �
osc(�; [ti�1; ti]) < ":

Problem 416

Prove or disprove that any function f : [0; 1] ! R is the derivative of some
function.

We prove that derivatives have IVP (Intermediate Value Property). Let � :
[0; 1] ! R be any continuous function and let E = f f(a)�f(b)a�b : a; b 2 [0; 1]; a 6=
bg. Claim: E is an interval. For any two points f(a)�f(b)

a�b and f(c)�f(d)
d�c in E

consider  : [0; 1] ! E de�ned by (t) = f((1�t)a+tc)�f((1�t)b+td)
(1�t)a+tc�f(1�t)b+tdg . Assuming,

without any loss of generality, that a < b and c < d we have (1� t)a+ tc < (1�
t)b+ td for all t so  is continuous. Since (0) = f(a)�f(b)

a�b and (1) = f(c)�f(d)
d�c

it follows that any number between f(a)�f(b)
a�b and f(c)�f(d)

d�c is (t) for some t,
hence belongs to E. Thus E is an interval. Now, if f is di¤erentiable on [0; 1]
then F = ff 0(x) : 0 � x � 1g � �E. By Mean Value Theorem E � F . Since E
is an interval so is any set between E and its closure �E. It follows that F is an
interval.

Remarks: can we characterize derivatives? Apparently not in any decent
way, according to Logicians. A function has SIVP if the image if any open in-
terval is the entire real line. A nowhere continuous function with SIVP exists.
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Such a function was constructed by Lebesgue. Since derivatives are necessar-
ily continuous on dense sets ( by Baire Category Theorem) the converse the
statemenet of this problem is not true.

Problem 417

Prove that a Borel probability measure P on R is absolutely continuous
w.r.t. Lebesgue measure if and only if supfjP (A� th)� P (A)j : A Borelg ! 0
as t! 0 for every real number h.

If P << m and dP
dm = f then jP (A� th)� P (A)j =

������
Z

A�th

f �
Z
A

f

������ �Z
A

jf(x� th)� f(x)j �
R
jf(x� th)� f(x)j which ! 0 by continuity of trans-

lates in L1. Now suppose supfjP (A� th)� P (A)j : A Borelg ! 0 as t! 0 for

every real number h. Let �j(A) =
Z
A

jp
2�
e�x

2j2=2dx. We have
��(�j � P )(A)� P (A)�� =��R �j(A� x)dP (x)� P (A)��

=

������R
Z

A�x

jp
2�
e�y

2j2=2dydP (x)� P (A)

������ =
���R P (A� y) jp

2�
e�y

2j2=2dy � P (A)
��� �

R
jP (A� y)� P (A)j jp

2�
e�y

2j2=2dy

=
R ���P (A� x

j )� P (A)
��� 1p

2�
e�x

2=2dx �
R
supf

���P (A� x
j )� P (A)

��� : A Borelg 1p
2�
e�x

2=2dx

which ! 0 as j ! 1 by Dominated Convergence Theorem. It su¤uces, there-

fore, to show that �j�P << m for each j. Now (�j�P )(A) =
R Z
A�x

jp
2�
e�y

2j2=2dydP (x)

and
Z

A�x

jp
2�
e�y

2j2=2dy =

Z
A

jp
2�
e�(y�x)

2j2=2dy = 0 for each x if m(A) = 0 and

hence (�j�P )(A) = 0. We have assumed that supfjP (A� x)� P (A)j : A Borelg
is a measurable function of x. It is, in fact, a (uniformly) continuous function
if supfjP (A� th)� P (A)j : A Borelg ! 0 as t! 0 for every real number h: In-
deed supfjP (A� x)� P (A� y)j : A Borelg = supfjP (A� (x� y))� P (A)j : A
Borelg ! 0 as x� y ! 0.

Problem 418

Show that R2 cannot be expressed as disjoint union of circles:

Remark: it is known that R3 is a disjoint union of circles. Ref. Set Theory
For The Working Mathematician by Ciesielski. See also Problem 419 below.
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Lemma
Let C(x; r) and C(y; �) be disjoint circles with y 2 C(x; r). Then r < �=2.
Proof: we think of R2 as C. The point y + �ei� belongs to C(x; r) \C(y; �)

if
��y � x+ �ei��� = r which is equivalent to r2+ �2+2�Ref(y� x)e��g = r2 or

Ref(y� x)e��g = ��=2. If z = y�x
jy�xj then this condition becomes Refze

��g =
��=2r. Such an � exists if an only if j�=2rj � 1. Hence, if C(x; r) are C(y; �)
are disjoint then � > 2r.

Now suppose R2 is a disjoint union of circles fCigi2I . Let C1 = C(x1; r1)
be some member of fCigi2I . Having chosen Ck = C(xk; rk); 1 � k � m we
take Cm+1 = C(xm+1; rm+1) to be any circle from fCigi2I which contains xm.
This de�nes a sequence of circles fCng. By the lemma we have rm+1 < rm=2.
In particular C 0ns are disitinct, hence disjoint. We have jxn � xn+1j = rn+1
for all n. Since rn < r1=2

n�1 it follows that jxn � xn+kj � jxn � xn+1j +
jxn+1 � xn+2j + ::: + jxn+k�1 � xn+kj < r1=2

n + r1=2
n+1 + ::: + r1=2

n+k�1 =
r1=2

n�1. Hence fxng is Cauchy. Let x0 = limxn. Let C = C(x; r) be a
member of fCigi2I which contains x0. Since jxn � xn+kj � jxn � xn+1j +
jxn+1 � xn+2j+ :::+ jxn+k�1 � xn+kj < rn=2+rn=2

2+ :::+rn=2
k < rn it follows

that jxn � x0j � rn. This implies x0 =2 C(xn�1; rn�1) because jxn�1 � x0j �
jxn � xn�1j + jxn � x0j � rn + rn < rn�1. Since x0 2 C(x; r) it follows that
C(x; r) is distinct from each Cn. Thus C \ Cn = ; for each n. We arrive at a
contradiction by showing that if n is so large that jxn � x0j � rn < r=2 then
C \Cn 6= ;. If jxn � x0j = rn then x0 2 C \Cn. Suppose jxn � x0j < rn. If we
show that Cn � B(x; r) it would follow, by convexity, that B(xn; rn) � B(x; r)
which implies that x0 2 B(xn; rn) � B(x; r) which contradicts the fact that
jx� x0j = r. If it is not true that Cn � B(x; r) then, since Cn does not
intersect the boundary of B(x; r) either we get Cn � fz : jz � xj > rg. (By
connectedness of Cn). In particular jxn � xj > r. Now consider the continuous
function t ! j(1� t)x+ tx0 � xnj. At t = 0 the value is jx� xnj. At t = 1
its value is jx0 � xnj < rn. If we can show that jx� xnj > rn we can conclude
that there exists t 2 (0; 1) such that j(1� t)x+ tx0 � xnj = rn. It follows
that (1 � t)x + tx0 2 Cn. However j(1� t)x+ tx0 � xj = t jx� x0j = tr < r
contradicting the fact that Cn � fz : jz � xj > rg. It remains only to show that
jx� xnj > rn. We have jx� xnj � jx� x0j � jx0 � xnj > r � rn > rn

Problem 419

Can R2 be expressed as a disjoint union of open balls? What about closed
balls of (positive radius)?

Connectedness shows that we cannot express R2 as a disjoint union of open
balls. Suppose R2 is a disjoint union of closed balls. The closed balls contain
points with rational coordinates, so the the collection of these balls is necessar-
ily countable. Consider the intersection of these balls with the unit circle T .
Pull back these closed segments by the map x ! e2�ix to see that [0; 1] is a
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countable disjoint union of closed sets. Now apply Problem 229 above to get a
contradiction.

Problem 420
Prove that there exists a set A � R2 such that for each x there is a unique y

with (x; y) 2 A and for every y the section fx : (x; y) 2 Ag is dense in R. Prove
also that there exists a function f : R ! R such that f((a; b)) = R whenever
a < b and f is not continuous at any point.
Remark: f has intermediate value property (IVP) since f((a; b)) includes all

numbers between f(a) and f(b). A function f such that f((a; b)) = R whenever
a < b is said to have strong IVP or strong Darboux property.

The second part follows immediately from the �rst: de�ne f(x) by the prop-
erty (x; f(x)) 2 A. [ For any y the set f�1(fyg) is dense and hence it intersects
(a; b) so f((a; b)) = R].
We construct a subset A0 of R2 as follows: A0 = f(x�; y�) : � < cg where

the points (x�; y�)�<c are de�ned by trans�nite induction as follows: the family
F consisting of sets of the type (a; b) � fyg with a; b; y 2 R and a < b has
cardinality c. We can write this family as fTa : � < cg. We pick points (x�; y�)
as follows: pick any point (x1; y1) in T1; having picked (x�; y�) for � < � we
pick (x� ; y�) as any point of T�n

[
�<�

(fx�g�R). This set is not empty because,

if we denote the �rst projection from R2 to R by p1 then the cardinality of
p1(

[
�<�

(fx�g�R) is atmost that of ) is less than c and the cardinality of p1(T�)

equals c. This de�nes our set A0 = f(x�; y�) : � < cg. Now we de�ne A as
A0 [ f(x; 0) : A0 \ (fxg � R) = ;g. We now verify that A has the desired
properties. Let x 2 R. If A0 \ (fxg � R) = ; then (x; 0) 2 A and (x; y) =2 A
if y 6= 0. If A0 \ ffxg � R) 6= ; then there exists y such that (x; y) 2 A0 � A
and y is unique. Hence for each x there is a unique y with (x; y) 2 A. Now let
y 2 R. If a < b then (a; b) � fyg 2 F and hence there exists � < c such that
(a; b) � fyg = T�. Now (x�; y�) 2 T� so x� 2 (a; b) and y� = y. It follows
that x� 2 fx : (x; y) 2 Ag \ (a; b). Hence fx : (x; y) 2 Ag \ (a; b) is nonempty
whenever a < b proving that fx : (x; y) 2 Ag is dense.

Problem 421

Let A and B be disjoint convex sets in a topological vector space X. If
0 2 A0 show that there is a non-zero continuous linear functional x� on X such
that Rex�(a) � Rex�(b) for all a 2 A; b 2 B.
Remarks: the condition 0 2 A0 can be replaced by the condition that A

has an interior point. If A is open the there is a stronger separation result: see
Theorem 3.4 a) of Rudin�s Functional Analysis.

We �rst show that there is a linear functional x� on X and a real number
c such that Rex�(a) � c � Rex�(b) for all a 2 A; b 2 B and then show that
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x�is necessarily continuous. Fix y 2 B. Let C = A� B + y. Then 0 2 C0 and
C is convex. Let p(x) = infft > 0 : 1tx 2 Cg. Then p is a seminorm. Assume
�rst that X is a real tvs. On the one dimensional space spanned by y consider
the map ty ! tp(y). This is a non-zero linear functional and p dominates it:
tp(y) � p(ty). [ This is an equality if t � 0 and it holds trivially if t < 0]. By
Hahn Banach Theorem there exists a linear functional x� on X extending the
map ty ! tp(y) such that x�(z) � p(z) for all z 2 X. Note that x�(a� b+ y) �
p(a� b+ y) � 1. Now y =2 C and hence p(y) � 1. [ We have used the facts that
C is conmvex and 0 2 C]: Thus x�(a� b+ y) � 1 � p(y) and so x�(a) � x�(b)
for all a 2 A; b 2 B. In the complex case we de�ne y�(z) = x�(z) � ix�(iz) to
get a complex linear functional y� withRe y�(a) � Re y�(b) for all a 2 A; b 2 B.
We now prove that any linear functional x� such that Rex�(a) � Rex�(b) for

all a 2 A; b 2 B is necessarily continuous. Since x�(z)� ix�(iz) is continuous i¤
x� is, we may restrict ourselves to the case of real scalars. Let U be a symmetric
neighborhood of 0 such that U � A. Fix b 2 B. We have x�(u) � x�(b) for all
u 2 U . Since U is symmetric this gives jx�(u)j � jx�(b)j for all u 2 U . This
implies jx�(v)j < " for all v 2 "

2jx�(b)jU if x�(b) 6= 0 and x� � 0 of x�(b) = 0.

Problem 422
In Problem 421 above can the assumption that A0 is non-empty be dropped?

No. Let X = L2([0; 1]); A = ff 2 X : f is continuous and f( 12 ) = 0g; B =
ff 2 X : f is continuous and f( 12 ) = 1g. Suppose there exists g 2 (L

2)� = L2

such that 0 =
R
0g �

R
fg for all f 2 B. Since B is dense we get

R
fg � 0

for all f 2 L2 which implies g = 0 a.e. [ Proof of the fact that B is dense:
let f 2 L2; " > 0. There exists h continuous such that kf � hk < "=2. Let
0 < � < "2

8(2khk1+1)2
. There is a continuous function � such that � = h on

[0; 1]n( 12 � �;
1
2 + �); � = 1 on (

1
2 �

�
2 ;

1
2 +

�
2 ) and linear in [

1
2 +

�
2 ;

1
2 + �] as well

as on [ 12 � �; 12 �
�
2 ]. In this case k�k1 � maxfkhk2 ; 1g. Hence kf � �k2 <

"
2 + kh� �k2 �

"
2 + (khk1 + k�k1)

p
2� < "].

Problem 423
Let (X; d) be a compact metric space and C � X be closed. Let T : X ! X

satisfy the condition d(T (x); T (y)) � d(x; y) for all x; y. If either T (C) � C or
C � T (C) show that T (C) = C.

This is easy from Problem 121 according to which T is necessarily an isom-
etry of X onto itself. If T (C) � C apply Problem 121 with C in place of X. If
T (C) � C apply the �rst case to T�1.

Problem 424 [ From stackexchange.com]

Let fAng be a sequence of events in a probability space (
;F ; P ). Show
that the following are equivalent:
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a) Pflim supAng = 1
b)
P
P (A \An) =1 whenever P (A) > 0

c) P (A \An) > 0 for in�nitely many n whenever P (A) > 0.

Remark: this problem show that if fAng is independent and
P
P (An) =1

then
P
P (A \ An) = 1 whenever P (A) > 0. This follows from Borel-Cantelli

Lemma. [ This is obviuosly false without independence: take An = Ac for all
n].
a) implies b): suppose

P
P (A \An) <1 for some A with P (A) > 0: Then

Pflim sup(A \An)g = 0, By a) this implies P (A) = 0 a contradiction.
b) implies c) is obvious.

c) implies a): suppose a) is false. Then there exists n such that Pf
1[
j=n

Ajg <

1. Let A = 
n
1[
j=n

Aj . Then P (A) > 0 and P (A \Aj) = 0 for all j � n so c) is

false.

Problem 425

Describe all Hilbert spaces H such that fT 2 L(H) : T 2 = 0g is dense in the
strong operator topology.

In the �nite dimensional case fT 2 L(H) : T 2 = 0g is a proper closed subset
of L(H) so it cannot be dense. We claim that it is dense whenever H is in�nite
dimensional. Consider a basic neighbourhood N = fT : kTxi � T0xik < "i
for 1 � i � kg of an operator T0 in the strong operator topology. We have
to show that N intersects fT 2 L(H) : T 2 = 0g. If xj 2 spanfxr : r 6=
jg then we can �nd a smaller neghbourhood of T0 contained in N such that
xj does not appear in that neighbourhood. Repeated use of the argumnet
shows that we may suppose that fx1; x2; :::; xng is lineraly independent. Let
fx1; x2; :::; xng [ fy1; y2; :::; yng [ fz�g�2I be a Hamel basis for H. We can
choose y0is in such a way that kT0xi � yik < ". [No open ball can be contained
in a �nite dimensional suspace of H. So, there exists y1 in B(T0x1; ") such that
fx1; x2; :::; xn; y1g is linearly independent. Then choose y2 2 B(T0x2; ") such
that fx1; x2; :::; xn; y1; y2g is linearly independent, and so on]. If Txi = yi; 1 �
i � k; Tyi = Tz� = 0; 1 � i � k; � 2 I then T extends to a bounded operator
on H with T 2 = 0. Further T 2 N .

Problem 426

Let (X; d) be a compact metric space and x0 2 X. Prove that x0 is an
isolated point i¤ ff 2 C(X) : f = 0 in some neighbourhood of x0g is closed in
C(X).
Remark: ff 2 C(X) : f = 0 in some neighbourhood of x0g is an ideal in

C(X). It follows easily from this problem that every ideal in C(X) is closed i¤
X is a �nite set.
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If x0 is isolated, fn = 0 in B(x0; rn) and fn ! f (uniformly) then f(x0) = 0
and fx0g is a neighbourhood of x0. For the converse let fn(x) = �n(d(x; x0))

where �n(t) =

8<: t if jtj > 2=n
0 if jtj < 1=n

2(jtj � 1
n ) if 1=n � jtj � 2=n

. Note that �n(t)! t uniformly

on R. Hence fn(x)! d(x; x0) uniformly on X. fn vanishes on B(x0; 1n ) and f
does not vanish in any neighbourhood of x0 since fx0g is not open.

Problem 427

Let T be a bounded operator on a Banach space X such that T (C) is closed
whenever C is closed and bounded. Show that the range of T is closed.

Let M = T�1f0g. Suppose Txn ! y. We have to show that y 2 T (X).
May suppose y 6= 0. Let �n = d(xn;M). May suppose �n > 0 for all n. There
exists yn 2 M such that 2�n > kxn � ynk. Let C be the closure of f xn�yn

kxn�ynk :

n � 1g. Then T (C) is closed. If kxn � ynk ! 1 then 0 2 T (C) (because
0 = limT ( xn�yn

kxn�ynk ) and T (
xn�yn
kxn�ynk ) 2 C for each n). Let Tz = 0 with z 2 C.

Now un = yn + kxn � ynk z 2 M and kxn � unk =
 xn�yn
kxn�ynk � z

 kxn � ynk.
By the de�nition of C we can choose n such that

 xn�yn
kxn�ynk � z

 < 1
3 . We then

get kxn � unk < 1
3 (2�n) < �n which contradicts the de�nition of �n.

Problem 428

Give a simple proof of Tietze�s Extension Theorem for metric spaces.

Let A be a closed subset of a metric spaceX and f : A! [0; 1] be continuous.
Let F (x) = 1

d(x;A) infff1 + f(y)gd(x; y) : y 2 Ag � 1 for x 2 XnA;F (x) = f(x)

for x 2 A. Then F is a continuous function fromX to [0; 1] which extends f . It is
easy to see that j[infff1 + f(y)gd(x1; y) : y 2 Ag � d(x1; y)]� [infff1 + f(y)gd(x2; y) : y 2 Ag � d(x2; y)]j �
3d(x1; x2). It follows that F is the ratio of two continuous functions on Ac.
Hence F is continuous on Ac. Now let x 2 A; fxng � Ac and xn ! x. We
have to show that 1

d(xn;A)
infff1 + f(y)gd(xn; y) : y 2 Ag ! f(x) + 1. Sup-

pose lim inf 1
d(xn;A)

infff1 + f(y)gd(xn; y) : y 2 Ag < f(x) + 1. Then there

exists � > 0 such that 1
d(xn;A)

infff1 + f(y)gd(xn; y) : y 2 Ag ! f(x) + 1 <

f(x) + 1 � � for in�nitely many n. Hence, for such n there exists yn 2 A such
that f1 + f(yn)gd(xn; yn) < [f(x) + 1 � �]d(xn; A) . Since the right side ! 0
we see that yn ! x. We have f1 + f(yn)gd(xn; yn) < [f(x) + 1 � �]d(xn; yn).
Hence f(yn)! f(x) leading to the contradiction 1+f(x) � 1+f(x)��. Hence
lim inf 1

d(xn;A)
infff1 + f(y)gd(xn; y) : y 2 Ag � f(x) + 1. Finally note that

if "n # 0 and (1 + "n)d(xn; A) > d(xn; yn) with yn 2 A then 1
d(xn;A)

infff1 +
f(y)gd(xn; y) : y 2 Ag � (1 + f(yn))(1 + "n). Since d(xn; A) ! 0 we get
d(xn; yn) ! 0 and so yn ! x. Thus 1

d(xn;A)
infff1 + f(y)gd(xn; y) : y 2 Ag �

(1 + f(yn))(1 + "n)! 1 + f(x) and the proof is complete.
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Problem 429

For a subset A of a topological space X show that the following are equiva-
lent:
a) @A is nowhere dense
b) A = U [B with U open and B nowhere dense
c) A = CnB with C closed and B nowhere dense
Remark: @Q has lots of interior points, but the boundary of A has no interior

if A is either open or closed.

This problem characterizes sets whose boundaries have no interior: such sets
have to dii¤er from open/closed by a nowhere dense set.
a) implies b): take U = A0 and B = AnA0.
b) implies c): take C = �A, B1 = �AnA. Claim: �AnA � �B [ @U ( where B is

as in b)). Let x 2 �AnA. If x 2 �U then, since x =2 A we have x =2 U so x 2 @U .
If, on the other hand, x =2 �U then x 2 �Aj �U � �B. We have proved the claim. It
is trivial to check that @U is nowhere dense for any open set U . Also the closure
of any nowhere dense set is nowhere dense.
c) implies a): let C;B be as in c). Without loss of generality assume that

B � C: Claim: @A � �B [ @C. If x 2 @A and x 2 (A [ B)0 then there is an
open set V such that x 2 V � A [ B. If x =2 �B then we can conclude that
x 2 V n �B � V nB � A a contradiction since V n �B is open (and x =2 A0). Thus
x 2 @A and x 2 (A [B)0 implies x 2 �B. But A [B = C so x 2 @A and x =2 �B
imply x =2 C0 and hence x 2 @C. This proves the claim. Since �B and @C are
nowhere dense we are done.

Problem 430

Construct a homeomorphism between two intervals which maps a null set to
set of positive measure.

De�ne f : C ! [0; 1] by f(
1X
n=1

2
3n ) =

1X
n=1

1
2n . Then f has the same value

at the end points of any of the intervals removed in the construction of C. By
making f constant in the intervals removed we get an increasing continuous
function f from [0; 1] onto itself. Let g(x) = x + f(x); 0 � x � 1. Clearly, g
is continuous and strictly increasing. Hence it is a homeomorphism from [0; 1]
onto [0; 2]: We claim that m(g(C)) = 1. If (an; bn); n = 1; 2; ::: are the intervals
removed in the construction of C then g([an; bn]) = cn + [an; bn] where cn =

f(an) = f(bn)., Hence m(g([0; 1]nC)) =
1X
n=1

m(cn + [an; bn]) = m([0; 1]nC) = 1

so m(g(C)) = 2 � 1 = 1. [ g(x)2 is a homeomorphism of [0; 1] onto itself which
maps C onto a set of measure 1

2 ].

Problem 431
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Let f; fn(n = 1; 2; :::) 2 L1(�) where � is a �nite positive measure. IfZ
E

fnd� !
Z
E

fd� for every measurable set E show that lim inf fn � f �

lim sup fn a.e. provided infffk : k � ng 2 L1(�) for each n.

Let gn = infffk : k � ng. By Fatou�s Lemma we have, for any E,R
E
lim inf

k
(fk�gn)d� � lim inf

k

R
E
(fk�gn)d� for each n. This gives

R
E
lim inf

k
fkd� �

lim inf
k

R
E
fkd� =

R
E
f . Take E = ff < lim inf

k
fkg to get �(E) = 0. This gives

lim inf fn � f a.e.. To get the second inequality change fn to �fn and f to �f .

Problem 432

Let P; Pn(n = 1; 2; :::) be probability measures on a metric space (X; d) such
that Pn(C)! P (C) for every closed set C. Show that Pn(E)! P (E) for every
Borel set E.

Let E be a Borel set and " > 0. There exists a closed set C and an open
set U such that C � E � U and P (UnC) < ". There exists an integer k
such that jPn(U)� P (U)j < " and jPn(C)� P (C)j < " for n � k. We have
Pn(E) � Pn(U) < P (U) + " < P (C) + 2" � P (E)) + 2" and n(E) � Pn(C) >
P (C)� " > P (U)� 2" � P (E)� 2" for n � k.

Problem 433

Let
R
log(1 + cf)dP � 0 for all c 2 C where P is a probability measure and

f 2 L1(P ). Show that f = 0 a.s.

We have 1
2�

2�Z
0

log
��1� eit�� dt = 0: This implies 1

2�

2�Z
0

log
��1� ceit�� dt = 0 if

jcj = 1. By Cauchy�s Theorem we have 1
2�

2�Z
0

log
��1� ceit�� dt = 0 if jcj < 1. If

jcj > 1 then 1
2�

2�Z
0

log
��1� ceit�� dt = log jcj+ 1

2�

2�Z
0

log
�� 1
c � e

it
�� dt = log jcj. Thus

1
2�

2�Z
0

log
��1� feit�� dt = (log jf j)+ . Hence R (log jf j)+dP = 1

2�

2�Z
0

R
log
��1� feit�� dPdt �

0 which implies (log jf j)+ = 0 a.s. and so jf j � 1 a.s.. Now replace f by rf
where r > 0 to get jrf j � 1 a.s. for each r > 0. We get f = 0 a.s..

Problem 434 [ This and the next few problems are from Dieudonne, Treatise
on Analysis, Vol. 2]
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Let A be a bounded open convex set in Rn. Show that m(A � A) ��
2n
n

�
m(A).

Let B = A�A: Then B is a bounded convex symmetric open set containing
0. Let �(x) = (infft > 0 : tx 2 Bcg)�1 for x 2 Bn[0g and �(0) = 0. Note
that 0 � �(x) < 1; (�(x))�1x 2 @B and � is continuous on B. [ See my notes
on convexity ( convexity.pdf)]. For 0 < t � 1 let Bt = fx 2 B : �(x) < tg. It
is easy to see from the de�nition that B1 = B and �(tx) = t�(x) so Bt = tB.
Claim 1: m(A\(A+x)) � (1��(x))nm(A). To show this we note that if x 2 B
and 0 < " < 1� �(x) then we can write 1

�(x)+"x = a1 � a2 with a1; a2 2 A and
(1��(x)�")A+(�(x)+")a1 = (1��(x)�")A+(�(x)+")a2+x. Since the left
side of this equality is contained in A and the right side is contained in A+x we
see thatm(A\(A+x)) � m((1��(x)�")A+(�(x)+")a1) = (1��(x)�")nm(A).
Claim 1 follows by letting "! 0.

Claim 2:
Z
B

(IA � I�A)(x)dx = (m(A))2. For this note that
Z
B

IA(x+ y)dy =

m(B\(A�x)) = m(A�x) = m(A) if x 2 A. Hence
Z
A

Z
B

IA(x+y)dydx = m2(A).

Fubini�s Theorem shows that the left side of this equation is
Z
B

Z
A

IA(x+ y)dydx

and Claim 2 follows by noting that
Z
A

IA(x + y)dy =
R
IA(x + y)IA(y)dy =R

IA(x� y)IA(�y)dy

=
R
IA(x�y)I�A(y)dy = (IA � I�A)(x). Claim 3: m(A) �

Z
B

(1��(x))ndx.

We have m2(A) =

Z
B

(IA � I�A)(x)dx

=

Z
B

(IA � I�A)(x)dx =
Z
B

m(x�A)\ (�A))dx =
Z
B

m(�x�A)\ (�A))dx =

Z
B

m((x + A) \ A)dx � f
Z
B

(1 � �(x))ndxgm(A) where we have used the fact

that B is symmetric. This proves claim 3. We now compute
Z
B

(1 � �(x))ndx

as follows: let fti : 0 � i � kg be a partition of [0; 1]. Then
Z
B

(1� �(x))ndx =

210



k�1X
i=0

Z
fx2B:ti��(x)<ti+1g

(1��(x))ndx. Note that
Z

fx2B:ti��(x)<ti+1g

(1��(x))ndx lies

between (1� ti+1)nm(fx 2 B : ti � �(x) < ti+1g) and (1� ti)nm(fx 2 B : ti �
�(x) < ti+1g). Since m(fx 2 B : ti � �(x) < ti+1g) = m(Bti+1 �Bti) = (tni+1 �

tni )m(B) ( because Bt = tB) we see that
Z

fx2B:ti��(x)<ti+1g

(1��(x))ndx lies be-

tween (1�ti+1)n(tni+1�tni )m(B) and (1�ti)n(tni+1�tni )m(B). However (applying

Mean Value Theorem to (tni+1�tni ) we see that)
k�1X
i=0

(1�ti+1)n(tni+1�tni )m(B) and

k�1X
i=0

(1�ti)n(tni+1�tni )m(B) both converge to
1Z
0

(1�t)nntn�1dtm(B) as the norm

of the partition ftig tends to 0. It follows that m(A) � m(B)

1Z
0

(1� t)nntn�1dt.

It remains only to show that

1Z
0

(1� t)nntn�1dt = 10@ 2n
n

1A . This is a standard
formula in Statistics; See �beta distribution �in Bickel and Docksum.

Problem 435

Let T be a bounded operator on a Banach space X such that kTnxk1=n ! 0
for each x. Show that the spectral radius �(T ) of T is 0:

Let c be a non-zero scalar and Tnx = 1
cnT

nx. Since supfkTnxk : n � 1g <
1 for each x we can apply Uniform Boundedness Principle to conclude that
supfkTnk : n � 1g < 1 which shows supf 1

jcnj kT
nk : n � 1g < 1 for each c.

This gives �(T ) � jcj for each c.

Problem 436

Let A be a complex Banach algebra and x; y 2 A with kecxye�cxk �M kyk
with M independent of c; x; y. Show that xy = yx:

Let f : C ! A be de�ned by f(c) = ecxye�cx. If x� 2 A� then x� � f is an
entire function: f(c+h)�f(c)h = e(c+h)xye�(c+h)x�ecxye�cx

h

= ecxehxye�cxe�hx�ecxye�cx
h = ecx e

hxye�hx�y
h e�cx ! ecx(xy�yx)e�cx as h!

0. [ Estimate the norm of e
cxehxye�cxe�hx�ecxye�cx

h � ecx(1+hx)ye�cx(1�hx)�ecxye�cx
h

for a justi�cation]. The hypothesis implies that x� � f is bounded. By Liou-
ville�s Theorem we get (x� � f)(c) = (x� � f)(0) for all c and d

dc (x
� � f)(c) = 0

so ecx(xy � yx)e�cx = 0 for all c. Put c = 0.
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Problem 437

Prove or disprove: the collection of all bounded operators on a Hilbert space
H with spectral radius 0 is closed set in B(H) (with the operator norm).
Remark: if H is �nite dimensional then any nilpotent operator S on H

satis�es SN = 0 where N is the dimension of H. Hence limits of such operators
are also nilpotent. Also �(S) = 0 implies that 0 is the only eigen value which
implies that SN = 0.

False. We show that there exists a sequence of nilpotent operators converging
to an operator T with �(T ) > 0: Let H = l2 and let feng be the standard
orthonormal basis. We de�ne numbers �1; �2; ::: as follows: let �n = e�m if
there exists a positive integer j and a non-negative integer m such that n =
2m(2j+1). [Since every positive integer has this form and since j;m are unique
we have de�ned �n for each n]. Let Ten = �nen+1 for all n. T de�nes a bounded
operator with kTk � supf�n : n � ng. We claim that �(T ) � 1. It is easy to see
that

T k = supf�n�n+1:::�n+k�1 : n � 1g. In particular T k � �1�2:::�k =

e�
p(p+1)

2 where p = [ log klog 2 ]. It follows that lim inf
T k1=k � 1. We now de�ne

Tren = �nen+1 if n is not of the type 2r(2j + 1) and 0 if n has this form. Since
at least one of the numbers n; n + 1; :::; n + 2r+1 � 1 has the form 2r(2j + 1)
it follows that T 2

r

r = 0. [ One of n; n + 1; :::; n + 2r � 1 is divisible by 2r. If
that number is a then either a has the desired form or it is of the form 2r+i

and 2r(2i + 1) has the desired form. This last number di¤ers from a by 2r is ir
must belong to n; n+ 1; :::; n+ 2r+1 � 1]: Thus Tr is nilpotent for each r. Also
k(T � Tr)(en)k = e�r if n is of the type 2r(2j + 1) and 0 otherwise. It follows
that kT � Trk � e�r ! 0.

Problem 438

Let 
 be a compact metric space and � be a regular Borel complex measure
on it such that

R
fgd� = (

R
fd�)(

R
gd�) for all f; g 2 C(
). Show that there

exists x 2 
 such that � = �x or � = 0.

If f; g 2 L2(j�j) and " > 0 then we can �nd continuous functions f1 and g1
such that kf � f1k2 < " and kg � g1k2 < " where kk2 is the norm in L2(j�j). It
follows that kfg � f1g1k1 � kfk2 kg � g1k2+kg1k2 kf � f1k2 < "(kfk2+kgk2+
"). Using this and the fact that

R
f1g1d� = (

R
f1d�)(

R
g1d�) it follows easily

that
R
fgd� = (

R
fd�)(

R
gd�). Thus �(A\B) = �(A)�(B) for all Borel sets A

and B. In particular �(A) = �2(A) and �(A) = 0 or 1 for any Borel set A. Let S
be the support of �. If a; b 2 S and a 6= b then there exist disjoint open balls U
and V containing a and b respectively. Hence �(U)�(V ) = �(U \V ) = 0. Thus
�(U) = 0 or �(V ) = 0. This contradicts the de�nition of S. Hence S = fxg for
some x. Since j�j (fxgc) = 0 we get � = c�x. Clearly c = 0 or 1.

Problem 439
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De�ne T : L2 ! L2 by Tf(x) =
R
e�jx�yjf(y)dy [where L2 stands for

(complex) L2(R)]. Show that T is a positive operator whose norm is 2. Also
show that �(T ) = [0; 2].

We have e�jxj =
R
eitx 1

�(1+t2)dt so< Tf; f >=
R R R

eit(x�y) 1
�(1+t2)dtf(y)dy[f(x)]

�dydx

and for �xed t we have
R R

eit(x�y)f(y)dy[f(x)]�dydx =
��R e�itxf(x)dx��2 � 0.

Hence T is a positive operator. From the inequality k� � fk2 � k�k1 kfk2 with
�(t) = e�jtj we see that kTfk2 �

R
e�jtjdt = 2 so kTk � 2. If we show

that (0; 2) � �(T ) it would follow that [0; 2] � �(T ) � [0; 2] so �(T ) = [0; 2]
which also implies that kTk = 2. Fix � 2 (0; 2) and write � as 2

1+�2 with
� 2 (0;1). Let fn(x) = ei�xe�jxj=n. We claim that kTfn � �fnk ! 0 prov-
ing that � 2 �(T ) (because kfnk ! 1). [ We have dropped the subscript
in kk2). Now kTfn � �fnk =

�̂f̂n � �f̂n. Let us compute f̂n: f̂n(x) =

1p
2�

R
e�itxei�te�jtj=ndt = np

2�

R
e�insxei�nse�jsjds = n

p
2� 1

1+n2(�+x)2 . Also

�̂(x) =
p
2� 1

1+x2 . It remains to show that
R ��� 1

1+x2
n

1+n2(�+x)2 �
1

1+�2
n

1+n2(�+x)2

���2 dx!
0 as n ! 1. For j�+ xj � 1 we have n

1+n2(�+x)2 � minf1;
1

1+(�+x)2 g and for

0 < j�+ xj < 1 we have
��� 1
1+x2 �

1
1+�2

��� n
1+n2(�+x)2 �

��� 1
1+x2 �

1
1+�2

��� 1
2j�+xj �

j��xj
(1+x2)(1+�2) . Using these and Dominated Convergence Theorem we get

R ��� 1
1+x2

n
1+n2(�+x)2 �

1
1+�2

n
1+n2(�+x)2

���2 dx!
0.

Problem 440
[ This and next few problems are taken from Springer book on Banach Space

Theory]

If kx+ yk = kxk+ kyk then ktx+ syk = t kxk+ s kyk for all t; s � 0.

If t � s then ktx+ syk = kt(x+ y) + (s� t)yk � t kx+ yk � (t � s) kyk =
t kxk + t kyk � (t � s) kyk = t kxk + s kyk and since the reverse inequality also
holds we get ktx+ syk = t kxk+ s kyk. If t < s replace (t; s) by (s; t) and (x; y)
by (y; x).

Problem 441

Prove or disprove: if kk1 and kk2 are equivalent norms on X then the closed
unit balls of (X; kk1) and (X; kk2) are homeomorphic.

True. A homeomorphism is given by f(x) = kxk1
kxk2

x if x 6= 0; f(0) = 0.

[ Thus closed unit balls under any two norms are homeomorphic if X is �nite
dimensional]

Problem 442
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If a linear subspace M of a Banach space X is a G� set show that it is
necessarily closed. Deduce that if a normed linear space X is homeomorphic to
a complete metric space then it is a Banach space.

Suppose E = �MnM is non-empty. Let x 2 �MnM . By hypothesisM =
\
n

Un

with each Un open in X. Let Vn = �M \ Un. Then Vn is open in �M . Also
M =

\
n

Vn. Note that �M = E [M . If we show that E and M are both of

�rst category in �M we would get a contradiction (by Baire Category Theorem).
First note that �MnV n is (closed and) nowhere dense because M � Vn so Vn is
dense in �M . Hence E =

[
n

( �MnVn) is of �rst category in �M . Now x+M � E

and hence x+M is also of �rst category in �M . It follows that M is also of �rst
category in �M . This �nishes the proof.

Second part: let Y be the Banach space obtained by completing X. The
hypothesis implies that X is a G� in Y and the �rst part shows that X is closed
in Y .
[ In particular an incomplete normed linear space cannot be homeomorphic

to a Banach space].

Problem 443

If X is a normed linear space on which all norms are equivalent then the
space is �nite dimensional.

Let X be an in�nite dimensional normed linear space. There exists a linear
functional f on X which is not continuous. Let x0 2 Xnf0g and kxk0 = kxk+
kx0k jf(x)j. If this norm is equivalent to the original norm then there exists
a �nite constant C such that kxk + kx0k jf(x)j � C kxk which implies that
jf(x)j � C�1

kx0k kxk contradicting the fact that f is not continuous.

Problem 444
Prove the following generalization of Parallelogram identity:X
"i2f�1;1g8i


nX
i=1

"ixi


2

= 2n
nX
i=1

kxik2. where x0is are vectors in a Hilbert

space.
Proof is by induction on n. For n = 1 this is trivial and for n = 2 it

reduces to the ordinary parallelogram identity. Suppose this holds for n = k.

Consider
X

"i2f�1;1g8i�k+1


k+1X
i=1

"ixi


2

=
X

"i2f�1;1g8i�k

2[


kX
i=1

"ixi


2

+ kxk+1k2] =

2k+1
kX
i=1

kxik2 + 2k+1 kxk+1k2 = 2k+1
k+1X
i=1

kxik2 :
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Problem 445

If the normed linear space X �nite dimensional then the only dense convex
set in X is X itself. If X is in�nite dimensional there exist two disjoint dense
convex sets whose union is X.

Let C be a dense convex set in a �nite dimensional normed linear space X.
Fix x 2 X and consider ft � 0 : tx 2 Cg. This is an interval in [0;1). If it
is bounded interval with right end point s then tx belongs to the exterior (i.e.
Xn �C) of C which contradicts the hypothesis. [ See my notes �convexity.pdf �].
Hence tx 2 C for all t � 0 for all x 2 X, so C = X. Now let X be an in�nite
dimensional normed linear space: There exists a linear functional f on X which
is not continuous. Let C1 = fx : f(x) < 0g and C2 = fx : f(x) � 0g. Clearly
these are disjoint convex sets. To show that these two sets are both dense it
su¢ ces to show that f�1fag is dense for each real number a. The range of f is
a subspace of the scalars and it is not f0g so f is onto. Let f(x0) = a. Then
f�1fag = x0+f

�1f0g. It su¢ ces to show that f�1f0g is dense. If it is not there
exists x 2 Xn[f�1f0g]�. Let y 2 [f�1f0g]�nf�1f0g. y exists because f�1f0g
is not closed. Now f(y � ax) = 0 where a = f(y)

f(x) . Hence y � ax 2 f�1f0g �
[f�1f0g]� and ax 2 [f�1f0g]� too ( because y 2 [f�1f0g]�). Since a 6= 0 we
get x 2 [f�1f0g]�, a contradiction.

Problem 446

Any real valued Lipschitz function on a subset of a metric space can be
extended to a Lipschitz function on the whole space with the same Lipschitz
constant.

Su¢ ces to consider the case when the Lipschitz constant is 1. Let A � X
where (X; d) is a given metric space and f : A ! R satisfy jf(x)� f(y)j �
d(x; y) 8x; y 2 A. Let F (x) = infff(y) + d(x; y) : y 2 Ag for x 2 X. Fix
a 2 A. For any y 2 A we have f(y)+ d(x; y) = f(a)+ d(x; y)�ff(a)� f(y)g �
f(a)+d(x; y)�d(a; y) � f(a)�d(x; a). This proves that F (x) � f(a)�d(x; a).
In particular F (x) > �1. Of course F (x) < 1 so F is real valued. Also,
if x 2 A then we can use the inequality established above with a = x to get
F (x) � f(a)� d(x; a) = f(x). Since F (x) � f(x) + d(x; x) by de�nition we see
that F extends f . Now F (x1)�F (x2)� " < F (x1)�ff(y)+ d(x2; y)g for some
y 2 A and hence F (x1) � F (x2) � " < f(y) + d(x1; y) � ff(y) + d(x2; y)g �
d(x1; x2). Let " ! 0 to get F (x1) � F (x2) � d(x1; x2). Interchange x1 and x2
to get �fF (x1)� F (x2)g � d(x1; x2).

Problem 447

LetM be a closed subspace of C[0; 1]. If every function inM is continuously
di¤erentiable show that M is �nite dimensional.
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Remark: if a closed subspace of Lp(�) is contained in L1(�) where � is a
probability measure and 0 < p <1 then the subspace is �nite dimensional. See
page 111 of Rudin�s Functional Analysis for a proof of the result of Grothendieck.

De�ne T : M ! C[0; 1] by Tf = f 0. T is linear and it has closed graph.
Hence there exists an integer N such that kf 0k1 � N kfk1 for all f 2 M .
Claim: dim(M) � N . Let fxi : 0 � i � kg be a partition on [0; 1] with
maxfxi+1 � xi : 0 � i < kg < 1=2N . De�ne S : M ! Rk+1 by Sf =
(f(x0); f(x1); :::; f(xk)). If we show that the linear map S is one-to-one we can
conclude that dimM � k + 1. Suppose Sf = 0 and kfk1 = 1. If x 2 [0; 1]
then there exists i such that x 2 [xi�1; xi] and Mean Value Theorem gives
jf(x)� f(xi)j � kf 0k1 (xi�xi�1) < N

2N . Since f(xi) = 0 this gives jf(x)j < 1=2
for each x contradicting the fact that kfk1 = 1.

Problem 448

Let H be a separable Hilbert space with ONB fe1; e2; :::g. Let C be the
closed convex hull of fe1; e2; :::g. Show that the interior of C is empty.
Remark: it can be shown that the closed convex hull of any weakly conver-

gent sequence in a Banach space has no interior. [ Due to Vesely and Zanco].

Proof: suppose x 2 C0. Let y =
1X
n=1

1
nen. Then x+

1
ky 2 C for k su¢ ciently

large. Let D = f
1X
n=1

anen :

1X
n=1

janj � 1g. D is a closed convex set. [ Use Fatou�s

Lemma to see that D is closed]. Hence C � D. We can write x as
1X
n=1

bnen

with
1X
n=1

jbnj � 1. Since x + 1
ky 2 C we also have

1X
n=1

��bn + 1
kn

�� � 1. It follows
that

1X
n=1

�� 1
kn

�� � 1 which is absurd.
Problem 449

Let fxng converge to x weakly in l2. Show that there is a subsequence
fxnjg which converges in the Cesaro sense in the norm, i.e. f

xn1+xn2+:::+xnk
k g

converges in the norm. [ Due to Banach and Saks]

We may assume that the weak limit of fxng is 0. Let M = supfkxnk : n =
1; 2; :::g. We pick inductively n1; n2; ::: as follows: n1 = 1 and nk+1 is chosen
such that

��< xni ; xnk+1 >
�� � 1

k for 1 � i � k. Then
xn1 + xn2 + :::+ xnk+1 �(xn1 + xnk+1) + (xn2 + xnk+1) + :::+ (xnk + xnk+1)+(k�1)xnk+1 and kxni + xn1k2 �
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2M2+ 2
k for each i � k. If kxn1 + xn2 + :::+ xnkk

2 � kM2+2k then kxn1 + xn2 + :::+ xnk+1k
2 �

kM2+2k+M2+2Re < xn1+xn2+ :::+xnk ; xnk+1 >� (k+1)M2+2k+2k 1k =

(k+1)M2+2(k+1) Hence, kxn1 + xn2 + :::+ xnkk
2 � kM2+2k for all k andxn1+xn2+:::+xnkk

2 � kM2+2k
k2 ! 0.

Problem 450

Any bounded linear map between normed linear spaces is weak-weak con-
tinuous. Is the converse true?

First part follows from de�nition of weak topology. Converse is also true: let
T : X ! Y be weak-weak continuous. Let y� 2 Y �. Then T�1fy : jy�(y)j < 1g
is a weak neighbourhood of 0 in X. Hence it is also a neighbourhood of 0 in
the norm topology and so it contains fx : kxk < �g for some � > 0. Thus
kxk < � implies jy�(Tx)j < 1. This implies jy�(Tx)j < 2=� whenever kxk � 1.
Hence Tfx : kxk � 1g is weakly bounded. This implies that Tfx : kxk � 1g.
[ This is a simple application of Uniform Boundedness Principle: let kxnk � 1
for each n and de�ne Tn : X� ! K (= R or C) by Tn(x�) = x�(xn). Then
sup jTn(x�)j : n � 1g < 1 for each x� so supfkTnk : n � 1g < 1 which means
fkxnkg is bounded].

Problem 451

Find two closed subspaces of a Hilbert space whose sum is not closed.

Let T : l2 ! l2 be any bounded operator whose range is dense but not equal
to l2. [ Example Tx = fanxng where 0 < an ! 0 fast enough; an = 1

n2 . for
example]. Let H be the direct sum of l2 with itself, M = f(x; Tx) : x 2 l2g and
N = f(x; 0) : x 2 l2g. Of course, M and N are closed subspaces of H. We claim
thatH = [M+N ]� butM+N 6= H. If b =2 T (l2) then (a; b) =2M+N . If (a; b) is
orthogonal toM+N then < a; x > + < b; Tx >= 0 and < a; x > + < b; 0 >= 0
for all x; y. Thus a = 0 and < b; Tx >= 0 for all x. Since the range of T is
dense we get b = 0: Hence H = [M +N ]�.

Problem 452

Let X be an in�nite dimensional Banach space with a Hamel basis feig.
De�ne fi : X ! K by fi(

P
ajej) = ai. Show that fi cannot be continuous for

every i.

Let x =
X
n

anein where e
0
in
s are distinct and an > 0 are such that the

series converges, e.g. an = 1
2nkeink

. We can write x as a �nite sum
X
j2F

bjej .

where F is a �nite set. Suppose ip =2 F . Then fip is not continuous. This is
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because fip(
rX

n=1

anein) = ap if r � p;
rX

n=1

anein ! x as r ! 1 but fip(x) =

fip(
X
j2F

bjej) = 0.

Problem 453

Show that any separable metric space is isometric to a subset of C[0; 1]. (
Assume Banach - Mazur Theorem)

Let fxng be dense in the metric space (X; d). De�ne f : X ! l1 by f(x) =
(d(x; xn)�d(y; xn)) where y 2 X is �xed. Since d(x; xn)�d(y; xn) � d(x; y) and
d(y; xn) � d(x; xn) � d(x; y) we see that f is a well-de�ned map into l1. Now
kf(x)� f(z)k = supfjd(x; xn)� d(z; xn)j : n � 1g. Clearly kf(x)� f(z)k �
d(x; z). If xnj ! z then kf(x)� f(z)k �

��d(x; xnj )� d(z; xnj )�� ! d(x; z).
Hence (X; d) is isometric to a separable subset of l1: The closed subspace gen-
erated by the range of f is a separable Banach space. By Banach - Mazur
Theorem there is an isometric isomorphism from this Banach space into C[0; 1].
The composition of these two isometries gives an isometry from X into C[0; 1].

Problem 454

Show that sum of two closed subspaces of a Banach space need not be closed.
Show that ifM and N are closed subspaces of a Banach space X withM \N =
f0g then M +N is closed if and only if inffkx� yk : x 2 M;y 2 N; kxk = 1 =
kykg > 0.

For the �rst part we actually give an example in a Hilbert space: take

M =
�
spfe1; e3; :::g and N =

�
spfe1 + 1

2e2; e3 +
1
22 e4; :::; e2n�1 +

1
2n e2n; :::g in

X = l2. If un =
nX
i=1

1
2i e2i. then un ! u where u =

1X
i=1

1
2i e2i. We claim

that un 2 M + N for each n but u =2 M + N . Since un =
nX
i=1

( 12i e2i +

e2i�1) +
nX
i=1

(�1)e2i�1 we get un 2 M + N . If u 2 M + N then we can write

1X
i=1

1
2i e2i =

1X
i=1

aie2i�1+ lim
k!1

kX
i=1

b
(k)
i ( 12i e2i+e2i�1). Taking 2j� th coordinates

on both sides we get 1
2i = lim

k!1
b
(k)
i

1
2i or lim

k!1
b
(k)
i = 1. Taking (2j � 1) � st

coordinates we get 0 = ai + lim
k!1

b
(k)
i = ai + 1. Thus ai = �1 for all i which

contradicts the fact that
1X
i=1

aie2i�1 converges.
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We now prove the second part. Suppose M +N is closed. De�ne P : M +
N ! N by P (m+ n) = n for m 2M;n 2 N . This is a well-de�ned linear map
and it is continuous by Closed Graph Theorem. Let x 2 M;y 2 N and kxk =
1 = kyk. Then 1 = kyk = kP (x� y)k < kPk kx� yk so kx� yk � 1

kPk . For the
converse part suppose M +N is not closed. Then, for each n, we can �nd xn 2
M;yn 2 N such that n kxn � ynk < kynk. [ Otherwise there exists n such that
n kx� yk � kyk for all x 2M and y 2 N which implies that if xj+yj ! z with
fxjg �M; fyjg � N then kyj � ylk � n k(xj + yj)� (xl + yl)k ! 0 as j; l!1
so fyjg converges to some y 2 N . Clearly xj ! z � y = x (say) so z = x+ y 2
M + N . This means M + N is closed, contrary to our assumption]. We have xn
kynk �

yn
kynk

 < 1=n. This implies that
���1�  xn

kynk

��� = ��� yn
kynk

�  xn
kynk

��� � yn
kynk �

xn
kynk

 < 1=n. In other words,
 xn
kynk

 2 (1 � 1=n; 1 + 1=n). Let tn = xn
kynk

 = kxnk
kynk and un =

xn
kxnk . We have

 xn
kxnk �

yn
kynk

 < 1=n+  xn
kxnk �

xn
kynk


= 1=n+kxnk

��� 1
kxnk �

1
kynk

��� = 1=n+ ���1� kxnk
kynk

��� = 1=n+ j1� tnj < 2=n. This
proves that inffkx� yk : x 2M;y 2 N; kxk = 1 = kykg > 0.

Problem 455

Let C be a closed convex set in a Hilbert space H: For any x 2 H let Px
be the unique element of C such that kx� Pxk � kx� yk for all y 2 C. Prove
that kPx� Pyk � kx� yk 8x; y 2 H: Also show that kxk2 � kx� Pxk2 is a
convex function on H.

We have kx� Pxk � kx� (ty + (1� t)Px)k if y 2 C and t 2 [0; 1]. Hence
kx� Pxk2 � kx� Pxk2+ t2 ky � Pxk2+2tRe < x�Px; Px� y >. This gives
0 � t ky � Pxk2 + 2Re < x� Px; Px� y >. Hence Re < x� Px; Px� y >� 0
for y 2 C . Hence Re < x � Px; Px � Py >� 0 for all x; y . Interchanging x
and y in we get Re < y � Py; Py � Px >� 0 so Re < Py � y; Px� Py >� 0.
Adding we get Re < x � Px + Py � y; Px � Py >� 0 which gives us Re <
x� y; Px�Py > �kPx� Pyk2 � 0. Hence kPx� Pyk2 � kx� yk kPx� Pyk
or kPx� Pyk � kx� yk. Now let �(x) = kxk2 � kx� Pxk2. Then �(x) =
supfkxk2 � kx� yk2 : y 2 Cg = supf2Re < x; y > �kyk2 : y 2 Cg and
convexity is obvious from this.

Problem 456

Let fxng; fyng be sequences in a normed linear space such that xn = yn = 1

for all n and kxn + ynk ! 2. Show that ktnxn + (1� tn)ynk ! 1 for any
ftng � [0; 1].

Without loss of generality we assume that ftng converges to some t 2 [0; 1].
Since jktnxn + (1� tn)ynk � ktxn + (1� t)ynkj � 2 jtn � tj it su¢ ces to con-
sider the case when tn = t for all n. Let �n(t) = ktxn + (1� t)ynk. Then �n is
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convex. Also �n(0) = 1 = �n(1) and �n(
1
2 )! 1. From these we can show that

�n(t)! 1 for 0 � t � 1: if 0 � t � 1
2 then �n(

1
2 ) � ��n(1)+(1��)�n(t) where

� is de�ned by 1
2 = �+ (1��)t. Thus lim inf �n(t) � 1 and since �n(t) � 1 for

all n we get lim�n(t) = 1. For
1
2 � t � 1 the result follows by interchanging xn

and yn and replacing t by 1� t.

Another proof: there exists x�n 2 X� such that kx�nk = 1 and x�n(xn+yn2 ) =xn+yn
2

. Since jx�n(xn)j � 1 and jx�n(yn)j � 1 it follows that x�n(xn) ! 1 and
x�n(yn) ! 1. Hence x�n(tnxn + (1 � tn)yn) � tn(1 � ") + (1 � tn)(1 � ") for
n su¢ ciently large. Since x�n(tnxn + (1 � tn)yn) � ktnxn + (1� tn)ynk we get
lim inf ktnxn + (1� tn)ynk � 1� ".

Problem 457

Let u be a unit vector in Rn and A be a Lebesgue measurable subset of Rn
such that for each x 2 Rn we have m(Lx) = 0 where Lx = ft 2 R : x+ tu 2 Ag.
Show that mn(A) = 0 (mn is Lebesgue measure on Rn and m is Lebesgue
measure on R).

Let T be an isometric isomorphism of Rn such that Tu = e1. If t2; t3; :::; tn 2
Rn�1 then ft 2 R : (t; t2; t3; :::; tn) 2 T (A)g = ft 2 R : tTu + (0; t2; t3; :::; tn) 2
T (A)g = ft 2 R : tu + T�1(0; t2; t3; :::; tn) 2 Ag. The hypothesis with x =
T�1(0; t2; t3; :::; tn) shows mft 2 R : (t; t2; t3; :::; tn) 2 T (A)g = 0. Since
t2; t3; :::; tn are arbitrary Fubini�s Theorem shows that mn(T (A)) = 0. But
mn(T (A)) = det(T )mn(A) and det(T ) 6= 0 so mn(A) = 0.

Problem 458

Let A be a subset of a Banach space X and � 2 (0; 1) Suppose we have the
following property: for any x 2 A and any � > 0 there exists y 2 X such that
ky � xk � � and B(y; � ky � xk) \A = ;. Show that A is a nowhere dense set
and it has Lebesgue measure of measure 0 when X = Rn:
Remark: a set A with the property stated above is called �porous�.

If possible let �A have an interior point x. Let fxng � A and xn ! x. By hy-
pothesis there exists yn such that kyn � xnk � 1=n and B(yn; � kyn � xnk)\A =
;. Let B(x; �) � �A. If kz � ynk � � kyn � xnk then kz � xk � � kyn � xnk +
kyn � xnk+kxn � xk. Hence if we choose n so large that � kyn � xnk+kyn � xnk+
kxn � xk < � we get kz � xk < � and z 2 B(x; �) � �A. It follows that
B(yn; � kyn � xnk) � �A. This is clearly a contradiction to B(yn; � kyn � xnk)\
A = ;. Hence A is nowhere dense. Now suppose X = Rn and mn(A) > 0.
There exists x 2 A such that m(B(x;r)\A)

m(B(x;r)) ! 1 as r ! 0. Choose r > 0 so

small that mn(B(x; t) \A) > (1� (�2 )
n)m(B(x; t)) if 0 < t < r. Choose y 2 X

such that ky � xk < r=2 and B(y; � ky � xk) \ A = ;. We now have (1 �
(�2 )

n)mn(B(x; 2 ky � xk)) < mn(A \ B(x; 2 ky � xk)). Since B(y; � ky � xk) \
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A = ; we get (1�(�2 )
n)mn(B(x; 2 ky � xk)) < mn(B(x; 2 ky � xk)nB(y; � ky � xk)).

Noting thatB(y; � ky � xk) � B(x; 2 ky � xk) we can computemn(B(x; 2 ky � xk)nB(y; � ky � xk))
in terms of the measure � of the open ball of radius 1 around 0: mn(B(x; 2 ky � xk)nB(y; � ky � xk)) =
2n ky � xkn ���n ky � xkn �. Finally we have (1�(�2 )

n)mn(B(x; 2 ky � xk)) �
(1 � (�2 )

n)2n ky � xkn � < 2n ky � xkn � � �n ky � xkn �. This is a contradic-
tion.

Problem 459

Do there exists two dense subspaces of a Hilbert space whose intersection is
f0g?

Yes. Step functions and C1 functions with compact support in L2(R).

Problem 460

Let X be a Banach space and K be a bounded closed convex set in X.
If every continuous map from K into itself has a �xed point show that K is
compact.

Suppose not. Then there exists � > 0 such there is no �nite � - net for K.
[ i.e. a �nite number of balls of radius cannot cover K]. Let x0 2 K. There
exists x1 2 K such that d(x1; spanfx0g) > �=2. [ Suppose d(x; spanfx0g) � �=2
for all x 2 K. Since K is bounded we get a bounded set S � spanfx0g such
that d(x; spanfx0g) � �=2. S can be covered by a �nite number of balls of
radius �=2 and hence K itself has a � -net]. Having chosen xi for 0 � i � k
choose xk+1 in K such that d(xk+1; spanfx0; x1; :::; xkg) > �=2 . [Existence
xk+1 can be proved as above since bounded subsets of spanfx0; x1; :::; xkg
are totally bounded]. By induction we get a sequence fxng � K such that
d(xk+1; spanfx0; x1; :::; xkg) > �=2 for all k. In view of the convexity of K each
of the segments [xi; xi+1] is contained in K. There exists a homeomorphism

� : L �
1[
i=0

[xi; xi+1] ! [0;1). [ The segments [xi; xi+1] (which are disjoint

except for the fact that adjacent segments have one point in common) can be
mapped homeomorphically to [i; i+1] via txi+(1�t)xi+1 ! ti+(1�t)(i+1) and
these can be combined to get �]. Note that L � K. We claim that L is closed.
Suppose fyng � L and yn ! y. By going to a subsequence we may suppose yn =
tnxin + (1 � tn)xin+1 with ftng converging to some t. In view of boundedness
of K it follows that zn � txin + (1 � t)xin+1 also converges to y. Since �nite
unions of [xi; xi+1] are closed we may suppose in " 1. Choose n so large that
kzn � zn+1k < (�=2)(1�t). Then

 t
1�txin + xin+1 � f

t
1�txin+1 + xin+1+1 g

 <
�=2. But then the distance from xin+1+1 and spanfxj : j < in+1 + 1g is less
than �=2 which is a contradiction.
Now de�ne g : L ! L by g(x) = ��1(�(x) + 1) and de�ne f : K ! K

by f(x) = g � � where � is a continuous map from K into L which is identity
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on L. The existence of � can be proved using Tietze Extension Theorem. [
A continuous map from a closed subset of a metric space into [0;1) can be
extended to a continuous map from the metric space into the same interval:
just take the extension � into R given by Tietze Theorem and consider j�j]. If
f(x) = x then x belongs to the range of g which if L and hence �(x) = x. Thus
g(x) = x. But this is absurd since �(g(x)) = �(x) + 1 6= �(x). This completes
the proof.

Problem 461

Let X be a Banach space and K be a closed convex set in X. If every
continuous map from K into itself has a �xed point show that K is compact.
[ Boundedness of K has been dropped from previous problem]

Assume, w.l.o.g. that 0 2 K. Assume that K is not compact. Suppose
there exists a closed bounded convex set K1 � K which is not compact. In
this case K1 contains a homeomorphic copy of [0;1) and we can proceed as in
above problem to complete the proof. In the contrary case fx 2 K : kxk � 1g is
necessarily compact. Since K is unbounded, convex and contains 0 we can �nd
fxng � K such that kxnk = n for all n. Compactness of fx 2 K : kxk � 1g
ensures that there is a subsequence fnjg of f1; 2; :::g and y such that

xnj
nj
! y.

Claim: [0;1)y � K. Let t 2 [0;1). Since xnj and 0 2 K and K is convex,
t
xnj
nj

2 K for all j su¢ ciently large. Hence ty 2 K and the claim is proved.
Now we can repeat the proof of previous problem again.

Problem 462

Show that Let X be a Banach space and K be a closed convex set in X.
If every continuous map from K into itself has a �xed point show that K is
compact.
[ Boundedness of K has been dropped from previous problem]

Assume, w.l.o.g. that 0 2 K. Assume that K is not compact. Suppose
there exists a closed bounded convex set K1 � K which is not compact. In
this case K1 contains a homeomorphic copy of [0;1) and we can proceed as in
above problem to complete the proof. In the contrary case fx 2 K : kxk � 1g is
necessarily compact. Since K is unbounded, convex and contains 0 we can �nd
fxng � K such that kxnk = n for all n. Compactness of fx 2 K : kxk � 1g
ensures that there is a subsequence fnjg of f1; 2; :::g and y such that

xnj
nj
! y.

Claim: [0;1)y � K. Let t 2 [0;1). Since xnj and 0 2 K and K is convex,
t
xnj
nj

2 K for all j su¢ ciently large. Hence ty 2 K and the claim is proved.
Now we can repeat the proof of previous problem again.

Problem 463
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Show that fx 2 Rn : kxk � 1g is not homeomorphic to fx 2 Rn : kxk = 1g.
Remark: ifX is an in�nite dimensional Banach space thatX; fx 2 X : kxk �

1g and fx 2 X : kxk = 1g are all homeomorphic( and they are homeomorphic
to R1)! [cf. Bessaga and Pelczynski, Selected Topics in In�nite Dimensional
Topology]

Suppose � : fx 2 Rn : kxk � 1g ! fx 2 Rn : kxk = 1g is a homeomorphism.
Consider ��1(�(�x)). This is a continuous map of fx 2 Rn : kxk � 1g into
itself. By Brouwer�s Fixed Point Theorem there exists x such that ��1(�(�x)) =
x. But then �(x) = �(�x) contradicting the fact that � is a homeomorphism.

Problem 464

Let C be a closed convex set in a Banach space X. If f : C ! C is a
continuous map such that f(C) is compact show that f has a �xed point.

We use Schauder�s Fixed Point Theorem and the fact that the closed convex
hull of a compact set is compact. [ My notes on Fixed Point Theorems and
Theorem 3.25 of Rudin;s Functional Analysis]. Let K be the closed convex hull
of f(C). Then K is a compact convex set and K � C. Also f(K) � f(C) � K.
By schauder�s theorem f has a �xed point in K, hence in C.

Problem 465

Let C be a closed convex bounded set in a Banach space X. Let f : C ! C
be a map such that kf(x)� f(y)k � kx� yk for all x; y 2 C. Prove that
inffkf(x)� xk : x 2 Cg = 0.
Remark: if C is also compact then we can conclude that f has a �xed point.

Let fn(x) = 1
nx0+(1�

1
n )f(x) where x0 2 C is �xed. Then fn maps C into

itself and kfn(x)� fn(y)k � (1 � 1
n ) kx� yk. This implies that fn(xn) = xn

for some xn 2 C. [ Fix n and denote by f
(k)
n the k- fold iteration of fn

with itself. For j < k;
f (k)n (x0)� f (j)n (x0)

 � (1 � 1
n )
j
f (k�j)n (x0)� x0


and

f (k�j)n (x0)� x0
 � 2 supfkzk : z 2 Cg so ff (k)n (x0)gk is Cauchy. Its

limit xn satis�es fn(xn) = xn]. Thus 1nx0 + (1 �
1
n )f(xn) = xn for all n.

Now kf(xn)� xnk =
f(xn)� 1

nx0 � (1�
1
n )f(xn)

 � kx0k
n + kf(xn)k

n . Since
ff(xng � C and C is bounded it follows that kf(xn)� xnk ! 0.

Problem 466
In previous problem show that f need not have a �xed point.

Let C = ff 2 C[0; 1] : f(0) = 0; f(1) = 1 and f([0; 1]) � [0; 1]g. Let
F : C ! C be de�ned by F (f)(x) = xf(x). Then kF (f)� F (g)k < kf � gk if
f 6= g. [ If kF (f)� F (g)k = kf � gk then there exists x0 such that kf � gk =

223



kF (f)� F (g)k = jx0f(x0)� x0g(x0)j � jf(x0)� g(x0)j � kf � gk so we must
have equality throughout. Hence x0 = 1 and kf � gk = jx0f(x0)� x0g(x0)j =
j1� 1j = 0]. If f 2 C and F (f) = f then xf(x) = f(x) for all x. But then
f(x) = 0 for x < 1 making f discontinuous at 1.

Problem 467

Let K be a compact convex set in a Banach space having at least two points.
Show that K has a non-diametral point, i.e., there exists x 2 K such that
supfkx� yk : y 2 Kg < d where d is the diameter of K.

Suppose supfkx� yk : y 2 Kg < d for all x 2 K. Let x1 2 K. There exists
x2 2 K such that kx1 � x2k = d. Having found x1; x2; :::; xn we can choose
xn+1 2 K such that

xn+1 � x1+x2+:::+xn
n

 = d. We get a contradiction by
showing that the sequence fxng in K has no convergent subsequence. We have

d =
xn+1 � x1+x2+:::+xn

n

 � kxn+1�x1k+kxn+1�x2k+:::+kxn+1�xnk
n � d+d+:::+d

n =
d which implies kxn+1 � xik = d for i � n. This is true for each n so kxi � xjk =
d whenever i 6= j.

Problem 468
Let X be a separable Banach space. Show that there exists a compact set

K such that kxk = 1 for all x 2 K and X is the closed subspace spanned by K.

Let fxng be dense in X. We may suppose xn 6= 0 for each n. Let Mn =
spanfx1; x2; :::; xng. Consider the sequence f x1

kx1k ;
x1
kx1k +

x2
2kx2k ;

x1
kx1k +

x2
2kx2k +

x2
22kx2k ; :::g. Call this sequence fyng. It is clear that yn ! y =

1X
n=1

xn
2nkxnk .

Let zn = yn
kynk and z = y

kyk . Then zn ! z. Let K = fzg [ fz1; z2; :::g.
Then K is a compact set each of whose elements has norm 1. Clearly, Mn �
spanfy1; y2; ::; yng = spanfz1; z2; ::; zng. Now X � [

[
n

Mn]
� � [span(K)]� and

hence X is the closed subspace spanned by K.

Problem 469

Prove or disprove the following: if �n; � are probability measures on a com-
pact Hausdor¤ space 
 such that �n

w! � then there exists a �nite positive
measure � on 
 such that supf�n(E) : n � 1g ! 0 as �(E)! 0.
Remark: if we assume that f�ng converges weakly in C�(
); i.e. �(�n) !

�(�) 8� 2 C��(
) then there does exist � with above property. [ Theorem
13.43 of Banach Space Theory by Fabian et al].

False: let 
 = [0; 1]; �n = �1=n; � = �0. Since
P
�f 1j g <1 we get �f 1j g ! 0

as j !1. However supf�nf 1j g : n � 1g = 1 for each j.
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Problem 470

Prove or disprove: if 
 is a compact Hausdor¤ space, ffg[ffng � C(
) and
fPng is a sequence of Borel probability measures on 
 such that

R
fnd�!

R
fd�

for every Borel probability measure � on 
 and
R
fdPn !

R
fdP for every

f 2 C(
) then
R
fndPn !

R
fdP .

Remark: if we assume that fPng converges weakly in C�(
); i.e. �(Pn) !
�(P ) 8� 2 C��(
) then it is true that

R
fndPn !

R
fdP . [ Theorem 13.43 of

Banach Space Theory by Fabian et al].

False: let 
 = [0; 1]; P1=n = �n; P = �0; f(x) � 0 and fn(x) =

8<: nx for 0 � x � 1=n
n( 2n � x) for 1=n � x � 2=n

0 for 2=n � x � 1
.

Problem 471

Let 
 be a compact Hausdor¤ space and x 2 
. Show that there is a
countable base of neighbourhoods of x if and only if fxg is a G� set.

If fUng is a countable base of neighbourhoods of x then fxg =
\
n

Un is a

G�. Conversely, suppose fxg =
\
n

Un with each Un open. There exists open

sets Vn such that � 2 Vn �
�
Vn � Un. Let Wn = V1 \V2 \ :::\Vn. Each Wn is a

neighbourhood of x. Let U be any neighbourhood of x. If U does not contain any

Wn then there exist points xn in WnnU; n = 1; 2; :::. The sets
�
WnnU; n = 1; 2; :::

are decreasing, compact and non-empty. By compactness of 
;
\
n

f
�
WnnUg is

non-empty. However
\
n

f
�
WnnUg �

\
n

f
�
VnnUg �

\
n

fUnnUg = fxgnU = ;.

Hence every neighborhood U of x contains one of the sets fWng.

Problem 472

Let X and Y be Banach spaces and T : X ! Y be a bounded linear map.
Show that T is compact if and only if there is a sequence fx�ng � X� such that
kTxk � supfjx�n(x)j : n � 1g and kx�nk ! 0.
Suppose fx�ng � X�; kTxk � supfjx�n(x)j : n � 1g and kx�nk ! 0. Let


 = f0g [ fx�n : n � 1g. With the metric from X� this set is a compact
metric space. Let fxjg be a sequence in the closed unit ball of X. De�ne
a sequence ffjg in C(
) by fj(x

�
n) = x�n(xj) and fj(0) = 0. It is triv-

ial to check that this sequence is uniformly bounded and equicontinuous on

. Hence there is a subsequence ffjlg converging uniformly on 
 to some
f 2 C(
). Hence supfjfjl(x�n)� fjr (x�n)j : n � 1g ! 0 as n; r !1. This means
supfjx�n(xjl)� x�n(xjr )j : n � 1g. But then kT (xjl)� T (xjr )k � supfjx�n(xjl � xjr )j :
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n � 1g ! 0 proving that fT (xn)g has a convergent subsequence. For the con-
verse let T be compact and A = fT �(y�) : ky�k � 1g. Since T � is compact too,
A is relatively compact, hence totally bounded. Claim: there exists fx�ng � X�

such that kx�nk ! 0 and A � �
cofx�n : n � 1g. Once this claim is established we

get kTxk = supfjy�(Tx)j : ky�k � 1g = supfj(T �y�)(x)j : ky�k � 1g
= supfjz�(x)j : z� 2 Ag � supfjx�n(x)j : n � 1g thereby completing the

proof. Let A1 = A and B1 be a 1
4 net for A (i.e. B1 is a �nite subset of A

such that every point of A is at distance less than 1
4 from some member of B1).

Let A2 = (A1 � B1) \ fx� : kx�k � 1
4g. Having de�ned Ai; Bi for 1 � i � m

let Am+1 = (Am � Bm) \ fx� : kx�k � 1
4m g and Bm+1 be a 1

4m+1 net for
Am+1. Let fx�ng be obtained by �rst listing all the elements of 2B1, then all
the elements of 22B2; :::. Since Bn � An � fx� : kx�k � 1

4n�1 g for n � 2
we get kx�nk ! 0. Now let x� 2 A. By de�nition of B1 there exists z�1 2 B1
such that kx� � z�1k < 1

4 . Hence u
�
1 � x� � z�1 2 A2 and x� = u�1 + z�1 . Now

there exists z�2 2 B2 such that kz�2 � z�1k < 1
42 . Now u�2 � z�1 � z�2 2 A2 and

z�1 = u�2 + z�2 . Thus x
� = u�1 + z�1 = u�1 + u�2 + z�2 . Proceeding like this we get

x� = u�1+u
�
2+ :::+u

�
j +z

�
j for each j. Since z

�
j 2 Bj � Aj we have

z�j  � 1
4j�1 .

Hence x� =
1X
k=1

(2ku�k)=2
k. By the de�nition of fx�ng it is clear that this ( norm

convergent) sum belongs to the closed convex hull of fx�n : n � 1g. This proves
the claim.

Problem 473

Let P; P1; P2; ::: be Borel probability measures on R such that Pn((a; b))!
P ((a; b)) whenever �1 < a < b <1. Show that Pn

w! P .

Let " > 0 and choose a positive number � such that P ((��;�)) > 1 � ".
There exists n0 such that Pn((��;�)) > 1� " for n � n0. Now Pn((�1; a]) =
Pn((�1;��]) + Pn((��; a]) < " + Pn((��; a]) � " + Pn((��; a + �)) !
"+ P ((��; a+ �))
� " + P ((�1; a + �)) so lim supPn((�1; a]) � " + P ((�1; a + �)). Since

� > 0 is arbitrary we get lim supPn((�1; a]) � " + P ((�1; a]). On the other
hand Pn((�1; a]) � Pn((��; a]) � Pn((��; a � �)) ! P ((��; a � �)) >
P ((�1; a��))�". Letting � ! 0 ( and then "! 0) we get lim inf Pn((�1; a]) �
P ((�1; a)). It follows that Pn((�1; a])! P ((�1; a]) whenever pfag = 0.

Problem 474

In Problem 473 above can we conclude that Pn(E)! P (E) for every Borel
set E?

No. Let fXng be i.i.d. random variable taking values 0 and 1 with proba-

bility 1
2 each and Sn =

X1+X2+:::+Xn�n
2

(1=2)
p
n

. By Central Limit Theorem Sn
d! Y
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where Y has standard normal distribution. Let E = Rnf k�n
2

(1=2)
p
n
: 0 � k �

n; n � 1g. Denoting the distributions of Sn and Y by Pn and P respectively
we see that the hypothesis of previous problem is satis�ed ( because any open
interval (a; b) is a continuity interval for P ) but P (E) = 1 6= 0 = limPn(E).

Problem 475
Let Tn be a bounded operator on C[0; 1] for each n. Suppose Tnf � 0

whenever f � 0; Tn1 ! 1; Tnx ! x and Tnx2 ! x2 in the norm. Show that
Tnf ! f for all f 2 C[0; 1]:
[ This result is due to Korovkin]

Fix t 2 [0; 1] and " > 0. Let p be a polynomial such that kp� fk1 < "=4.
Let m and M be the minimum and maximum of p00 on [0; 1]. Let �1(x) =

p(t) + (x� t)p0(t) +m (x�t)2
2 ; �2(x) = p(t) + (x� t)p0(t) +M (x�t)2

2 . By Taylor�s
formula we have �1 � p � �2 on [0; 1]: Note that Tn�i ! �i; i = 1; 2 by
hypothesis. Since �1(x) � "=4 < f(x) < �2(x) + "=4 for every x we have
Tn�1 � ("=4)Tn1 � Tnf � Tn�2 + ("=4)Tn1. Note that Tn�1 � ("=4)Tn1 !
�1 � ("=4) and Tn�2 + ("=4)Tn1 ! �2 + ("=4). If � > 0 is su¢ ciently small,
then j�2 � �1j < "=4 on I � [t� �; t+ �]. Hence �1(x)� ("=4) > p(x)� ("=2) >
f(x) � (3"=4) and, similarly, �2 + ("=4) < f(x) + �2 + (3"=4). It follows that
f(x)� (3"=4) < Tnf(x) < f(x) + (3"=4) for all x 2 I for n su¢ ciently large. It
is now clear from compactness of [0; 1] that Tnf ! f uniformly on [0; 1].

Problem 476

Let K be a subset of a separable Banach space X such that fx�ng � X� and
x�n(x)! 0 for all x 2 X imply x�n(x)! 0 uniformly for x 2 K. Show that K is
relatively compact and conversely.

Suppose not. Then 9 � > 0 such that there is no � - net for K. We can
construct a sequence fxng in K such that d(xn+1; spanfx1; x2; :::; xng) > �=2
for all n. Such a sequence was constructed in Problem 460 above. There exists
x�n such that kx�nk = 1; x�n(xn) > �=2 and x�n(xk) = 0 for 1 � k � n � 1.

[ De�ne x�n(
nX
i=1

aixi) = an�n where �n = 1

supfjanj:


nX
i=1

aixi

�1g
. x�n is well

de�ned on spanfx1; x2; :::; xng; it is easy to see that kx�nk = 1 and janj < �,
hence x�n(xn) > �=2. Extend x�n using Hahn-Banach Theorem]. Since the
closed unit ball of X� is weak� compact metric (by separability of X) there is a
subsequence fx�njg of fx

�
ng converging to some x�. Since x�n(xk) = 0 for k < n

we get x�(xk) = 0 for all k. Thus (x�nj � x�)(x) ! 0 as j ! 1 for each x but
the convergence is not uniform on K because (x�nj �x

�)(xnj ) = x�nj (xnj ) > �=2
for all j. The converse is easy: by Uniform Boundedness Principle fkx�nkg is
bounded. Since K is totally bounded it is easily seen that x�n(x)! 0 uniformly
for x 2 K.
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Problem 477

Let � be a �nite positive (non-zero) measure on a compact abelian topo-
logical group G such that � � � = �. Show that � is a Haar measure. What
happens if G is replaced by R?

First note that (�(G))2 = �(G) so � is a probability measure. Let f be
a non-negative continuous function and g(x) =

R
f(yx)d�(y). Then g(x) =R

f(yx)d(� � �)(y) =
R R

f(yzx)d�(z)d�(y) =
R
g(yx)d�(y). Let S = fx 2

G : g(x) = supfg(z) : z 2 Gg. Let x 2 S. Then g(x) =
R
g(yx)d�(y) �

supfg(z) : z 2 Gg = g(x) so �(S) = 1. Since � has full support and g is
continuous it follows that g is a constant. Thus

R
f(yx)d�(y) =

R
f(ye)d�(y)

so
R
fd�x =

R
fd�. This holds for all non-negative continuous functions f

hence for all continuous function f and it follows that �x = �. This holds
for all x and we are done. If G is replaced by R then necessarily � = �0:R
eitxd�(x) = (

R
eitxd�(x))2 so

R
eitxd�(x) = 0 or 1 for each t. By continuity

we get
R
eitxd�(x) = 1 =

R
eitxd�0(x) for all t proving that � = �0.

Problem 478

Prove or disprove:

a) there exist non-zero sequences fangn2Z; fbngn2Z such that
1X

n=�1
janj <

1;
1X

n=�1
jbnj <1 and

1X
n=�1

am�nbn = 0 for all m 2 Z

b) there exists a non-zero sequence fangn2Z such that
1X

n=�1
janj < 1 and

1X
n=�1

am�nan = 0 for all m 2 Z

a) True. Let f and g be smooth functions : R! R with disjoint supports con-
tained in (0; 2�). Since f 0 and g0 are of bounded variation we have

��(f 0)^(n)�� �
C
jnj and

��(g0)^(n)�� � C
jnj for some C <1 for n 6= 0. This gives

���f̂(n)��� � C
n2 and

jĝ(n)j � C
n2 for n 6= 0. It follows that

1X
n=�1

janj <1 and
1X

n=�1
jbnj <1 where

an = f̂(n) and bn = ĝ(n). Let cn =
1X

n=�1
am�nbn. Then

1X
n=�1

jcnj < 1 and

a Fubini argument shows that
1X

n=�1
cne

inx = (
1X

n=�1
ane

inx)(
1X

n=�1
bne

inx) =

f(x)g(x) = 0 for all x. [ We have used the fact that the Fourier series of a dif-
ferentiable function converges to the function at each point]. From uniqueness
of Fourier coe¢ cients it follows that cn = 0 for all n.
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b) False. With f(x) =
1X

n=�1
ane

inx we would have f2 � 0 which implies

an = 0 for all n:

Next few problems are selected from Davidson and Donsig�s book on Real
Analysis and Applications.
Problem 479

Let M and N be closed subspaces of a real Banach space X such that
M \ N = f0g. Prove that M + N is closed if and only if inffkx� yk : x 2
M;y 2 N; kxk = 1 = kykg > 0.

Suppose M + N is closed and P : M + N ! M be the projection map.
Closed Graph Theorem shows that P is continuous. If kxn � ynk ! 0 with xn 2
M;yn 2 N; kxnk = 1 = kynk then kP (xn � yn)k ! 0. But P (xn � yn) = xn
and fxng does not converge to 0. Conversely, suppose inffkx� yk : x 2M;y 2
N; kxk = 1 = kykg > 0. Suppose xn 2 M;yn 2 N for all n and xn + yn ! z.
Let an = kxnk ; bn = kynk ; un = 1

an
xn; vn =

1
bn
yn. We have anun + bnvn ! z.

Suppose �n � k(an; bn)k ! 1. Then tnun+snvn ! 0 where tn = an
�n
and sn =

bn
�n
. Since un and vn are unit vectors we get jjtnj � jsnjj � ktnun + snvnk ! 0.

Since t2n + s2n = 1 it follows that, through a subsequence, tn ! t; sn ! s with
s = �t(= � 1p

2
). Now ktun + svnk � ktnun + snvnk + jtn � tj + jsn � sj ! 0

( all these limits are along a subsequence). But then kun � vnk ! 0 and the
hypothesis shows that kun � vnk � �. Conclusion: �n must be bounded. Going
to a subsequence we may suppose an ! a and bn ! b for some a; b. Since
anun + bnvn ! z we get aun + bvn ! z. If a = 0 then z = lim(xn + yn) =
lim yn 2 N � M + N . Similarly if b = 0 then z 2 M � M + N: So assume
that a and b are non-zero. If fung is Cauchy (hence convergent) so is fvng
and we get z 2 M + N: If not there exists " > 0 and fnjg; fmjg " 1 such

that
unj � umj

 > " for all j. Let wj =
unj�umj

kunj�umjk
; zj =

vnj�vmj

kvnj�vmjk ; rj =unj � umj

 ; �j = vnj � vmj

. Then arjwj + b�jzj ! 0. Since frjg and f�jg
have convergent subsequences, say with limits r and �) we get arwj + b�zj ! 0.
But then jjarj � jb�jj � karwj + b�zjk ! 0 so ar = �b�. This gives wj�zj ! 0
which contradicts the hypothesis unless ar = b� = 0 which implies r = � = 0.
But rj � " so r � ". This �nishes the proof.

Problem 480

Show that �I�T is invertible if � =2 f0; 1g and T 2 = T ; compute its inverse
explicitly.
[ T may be a bounded operator, in which case the inverse is also a bounded

operator) or just a linear idempotent map]
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The inverse is 1�I+
1

�(��1)T . To guess this write (�I�T )
�1 = ��1

1X
n=0

1
�nT

n =

��1(I +
1X
n=1

1
�nT ).

Problem 481

Let X be a normed linear space. Show that X is a complete if and only if
the intersection of any decreasing sequence of closed balls is non-empty.
Remark: the proof below can be adopted to show that a metric space (X; d)

is complete if and only if the intersection of any decreasing sequence of closed
balls with radii converging to 0 is non-empty. [ Cantor�s Intersection Theorem
gives one part. See also problem 490].
Suppose the intersection of any decreasing sequence of closed balls is non-

empty. Let fxng be Cauchy. Let
xnk � xnk+1 < 1

2k
with nk " and rk = 1

2k�1
.

Then the closed balls with centers at xnk , radius rk are decreasing and if x is
in their intersection then xnk ! x which implies xn ! x. Hence X is complete.
Conversely let X be complete and let f �B(xn; rn)g be a decreasing sequence
of closed balls. Claim: fxng is Cauchy. We have xn+1 + rn+1

kxn+1�xnk (xn+1 �

xn) 2 �B(xn+1; rn+1) � �B(xn; rn) so
xn+1 + rn+1

kxn+1�xnk (xn+1 � xn)� xn
 �

rn which says kxn+1 � xnk + rn+1 � rn i.e. kxn+1 � xnk � rn � rn+1. This
implies that frng is decreasing ( which is also obvious from the fact that the
diameters of �B(xn; rn) are decreasing). Let rn # r. Iteration of kxn+1 � xnk �
rn � rn+1 yields kxn+m � xnk � rn � rn+m ! 0 as n;m ! 1 so the Cauchy
sequence fxng has a limit x. Now, letting m!1 in kxn+m � xnk � rn�rn+m
we get kx� xnk � rn�r � rn so the intersection of the balls �B(xn; rn) contains
x. Note that the intersection of �B(xn; rn); n = 1; 2; ::: is precisely �B(x; r).

Problem 482

Given distinct real numbers fx1; x2; :::; xkg � [0; 1]; " > 0 and a continuous
function f on [0; 1] show that there is a polynomial p such that kf � pk1 < "
and p(xi) = f(xi) for 1 � i � k.

Let qi(x) =

Y
j 6=i

(x�xj)Y
j 6=i

(xi�xj)
. Then qi is a polynomial, qi(xi) = 1 and qi(xj) = 0 if

j 6= i. Let � =
kX
i=1

aiqi. Then �(xi) = ai; 1 � i � k. Also k�k1 �M maxfjaij :

1 � i � kg where M depends only on fx1; x2; :::; xkg. Now choose a polynomial
p0 such that kf � p0k1 < "=(1 +M). Let ai = f(xi) � p0(xi); 1 � i � k. Let
� correspond to this choice of a0is. Let p = p0 + �. Then p(xi) = p0(xi) + ai =
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f(xi); 1 � i � k. Also kp� fk1 � kp0 � fk1 + k�k1 < "=(1 +M) +M"=(1 +
M) = " since jaij < "=(1 +M) for each i.

Problem 483

Show that
1X
n=1

ane
inx is the Fourier series of a C1 periodic function if and

only if fnkf̂(n)g is bounded for each k.

Recall that
���f̂(n)��� � C

n , n 6= 0 if f is C
1. Also f̂ (k)(n) = (in)kf̂(n). Thus���nkf̂(n)��� = ���f̂ (k)(n)��� and fnkf̂(n)g is bounded if f is C1. Conversely suppose

k � 2 is �xed and
���nkf̂(n)��� � Ck with Ck independent of n. Then repeated

di¤erentiation of the Fourier series of f shows that f 2 C(k�2).

Problem 484

Prove that supf
yZ
0

sin x
x dx : y > 0g =

�Z
0

sin x
x dx 6=

1Z
0

sin x
x dx.

Let an =

n�Z
(n�1)�

sin x
x dx. Note that sinx is alternately positive and negative

in (0; �); (�; 2�); :::. Hence an > 0 if n is odd, < 0 if n is even. Also Then

an+1 =

n�Z
(n�1)�

sin(x+�)
x+� dx = �

n�Z
(n�1)�

sin x
x+�dx. It follows that jan+1j < janj for all

n. [ Indeed janj =
n�Z

(n�1)�

jsin xj
x dx and jan+1j =

n�Z
(n�1)�

jsin xj
x+� dx]. Let sn =

nX
j=1

aj .

If n is odd then sn = b1+(b3� b2)+ :::+(bn� bn�1) where bn = janj. It follows
that sn � b1. If n is even then sn � sn�1 � b1. Thus sn � ja1j = a1 for all n.

This means

n�Z
0

sin x
x dx �

�Z
0

sin x
x dx for each n. Also the fact that a0ns alternate in

sign and a1 > 0 implies that sn > 0 for all n. If (n� 1)� � y � n� with n then
yZ
0

sin x
x dx =

(n�1)�Z
0

sin x
x dx+

yZ
(n�1)�

sin x
x dx �

(n�1)�Z
0

sin x
x dx �

�Z
0

sin x
x dx if n is even.

If n is odd then

yZ
0

sin x
x dx =

(n�1)�Z
0

sin x
x dx+

yZ
(n�1)�

sin x
x dx �

n�Z
0

sin x
x dx �

�Z
0

sin x
x dx.
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In the �rst case

yZ
0

sin x
x dx �

(n�1)�Z
0

sin x
x dx +

n�Z
(n�1)�

sin x
x dx = sn > 0 and in the

second case

yZ
0

sin x
x dx =

(n�1)�Z
0

sin x
x dx +

yZ
(n�1)�

sin x
x dx �

(n�1)�Z
0

sin x
x dx = sn�1 >

0. We have proved that

������
yZ
0

sin x
x dx

������ �
�Z
0

sin x
x dx for every y > 0 proving that

supf
yZ
0

sin x
x dx : y > 0g =

�Z
0

sin x
x dx. Note: we have proved that

yZ
0

sin x
x dx > 0

for all y > 0. If

�Z
0

sin x
x dx =

1Z
0

sin x
x dx then a2 + a3 + ::: = 0. This is impossible

because a2 + a3 < 0; a4 + a5 < 0; :::.

Problem 485

Let C be a closed convex set in a normed linear space X and let x 2 C.
Show that fy 2 X : x+ ty 2 C 8t > 0g is independent of x 2 C.

Let x1; x2 2 C and y be such that x1 + ty 2 C 8t > 0. We have x2 + ty =
lim
n!1

[(1� 1
n )x2+

1
nfx1+ntyg]. Since x1+nty 2 C we get (1�

1
n )x2+

1
nfx1+ntyg 2

C 8n so x2 + ty 2 C.

Problem 486

Let Ci; i = 1; 2; 3; 4 be convex sets in R2. If any three of these have non-
empty intersection show that all four of them have non-empty intersection.
Prove that if any two of three convex sets in R2 have non-empty intersection it
does not follow that all three of them have non-empty intersection. Generalize
to Rn.

For the counter-example look at the coordinate axes and the line f(x:y) :
x+y = 1g. Now let xi 2

\
j 6=i

Cj . Let yi = xi�x4; 1 � i � 3. There three vectors

are linearly dependent. Let
3X
i=1

aiyi = 0 with not all of a1; a2; a3 equal to 0. We

have
4X
i=1

bixi = 0 where bi = ai for 1 � i � 3 and b4 = �(a1 + a2 + a3). Thus

4X
i=1

bi = 0 and not all the b0is are 0. Partition f1; 2; 3; 4g into two sets I and J
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by I = fi 2 f1; 2; 3; 4g : bi � 0g and J = fi 2 f1; 2; 3; 4g : bi < 0g. We haveX
i2I

jbijxi =
X
i2J

jbijxi. Also
X
i2I

jbij =
X
i2J

jbij = c (say). Writing ci for
jbij
c we

get
X
i2I

jcijxi =
X
i2J

jcijxi. The left side belongs to
\
j2J

Cj and the right side to\
j2I

Cj . Hence
X
i2I

jcijxi =
X
i2J

jcijxi belongs to every Ci. Generalization to Rn

is straightforward.

Problem 487

Give two closed convex sets in R2 whose sum is not closed.

C1 = f(x; y) : x > 0 and y � 1
xg; C2 = f(x; y) : x < 0 and y � � 1

xg. Since
(n; 2n ) + (�n;

2
n )! (0; 0) we see that C1 + C2 is not closed.

Problem 488

If f : R! R is convex and bounded above show that f is a constant.

Let x1 < x2. If f(x1) < f(x2) then, for n su¢ ciently large, we have x2 =
ax1 + (1 � a)n where a = n�x2

n�x1 and f(x2) � af(x1) + (1 � a)f(n) � af(x1) +

(1� a) supff(t) : t 2 Rg. Since f(x2)�af(x1)
1�a ! 1 as n ! 1 we get supff(t) :

t 2 Rg = 1. If f(x2) < f(x1) then x1 = a(�n) + (1 � a)x2 where a = x2�x1
x2+n

and f(x1) � af(�n) + (1� a)f(x2) � a supff(t) : t 2 Rg+ (1� a)f(x2). Since
f(x1)�(1�a)f(x2)

a ! 1 as n ! 1 we supff(t) : t 2 Rg = 1 again. It follows
that if supff(t) : t 2 Rg <1 then f(x1) = f(x2) whenever x1 < x2.

Problem 489

Let f : R2 ! R2 be convex in the �rst variable and continuous in the second
variable. Show that f is continuous.

Fix (a; b) 2 R2. Let " > 0. Choose r > 0 such that jf(x; b)� f(a; b)j < " if
jx� aj � r. Choose s > 0 such that jf(a� r; y)� f(a� r; b)j < �; jf(a; y)� f(a; b)j <
� and jf(a+ r; y)� f(a+ r; b)j < � if jy � bj � s. Now let jx� aj � r and
jy � bj � s. Write (x; y) as �(a� r; y) + (1��)(a+ r; y) where � = a+r�x

2r . We
have f(x; y) � �f(a� r; y)+ (1��)f(a+ r; y) � �["+ f(a+ r; b)] + (1��)["+
f(a+ r; b)]
� "+ �[f(a; b) + "] + (1� �)[f(a; b) + "] = f(a; b) + 2". On the other hand,

if a� r � x � a then (a; y) = �(a+ r; y) + (1� �)(x; y) where � = a�x
a+r�x and

f(a; b) � " < f(a; y) � �f(a + r; y) + (1 � �)f(x; y) < �[f(a + r; b) + "] + (1 �
�)f(x; y)

< �[f(a; b) + 2"] + (1 � �)f(x; y) so f(x; y) > 1
1�� [(1 � �)f(a; b) � 2"�] =

f(a; b)� 2"�
1�� . Noting that � ! 0 as x! a we see that lim inf f(x; y) � f(a; b).
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For a � x � a+ r we write (a; y) = (a� r; y) + (1� )(x; y) and use a similar
argument.

Problem 490

Show that there exists a complete metric space (X; d) and a decreasing
sequence of closed balls in it whose intersection is empty.

[Solution from stackexchange.com]. Let X = N; d(n;m) = 1 +
�� 1
2n �

1
2m

�� if
n 6= m, 0 if n = m. Let Bn be the closed ball with center n + 1 and radius
1+ 1

2n+1 : Indeed, d(n+1;m) � 1+
1

2n+1 i¤ n+1 = m or 0 <
�� 1
2n+1 �

1
2m

�� � 1
2n+1

i¤m � n. Since any Cauchy sequence is a constant, the space is complete.

Problem 491

Let fxig be linearly independent in a vector space V over K(= R or C):
Show that there is an inner product on V which makes fxig an orthonormal
set.

Let A � fxig[ fyjg be a Hamel basis of V . Let X = L2(A), the space of all

functions f : A! K with
X
a2A

jf(a)j2 <1. X is a Hilbert space under the inner

product < f; g >=
X
a2A

f(a)[g(a)]�. De�ne a linear map � : V ! X by de�ning

�(a) = �a for a 2 A and extending � by linearity to all of V . Here �a(b) = 1
if b = a and 0 otherwise. De�ne < x; y >=< �(x); �(y) > for x; y 2 V . Then
< xi; xj >=< �(xi); �(xj) >=< �xi ; �xj >= 1 if i = j, 0 if i 6= j.

Problem 492

If A is an uncountable subset of R show that there exists a 2 R such that
A \ (�1; a) and A \ (a;1) are both uncountable.

Suppose not. Then R = E [ F where E = fx 2 R : A \ (�1; x) is at most
countableg and F = fx 2 R : A \ (x;1) is at most countableg. Since A is
uncountable the sets E and F are disjoint. If we show that E and F are closed
we get a contradiction to the fact that R is connected. Suppose fxng � E and

xn ! x. Then A \ (�1; x) �
1[
n=1

A \ (�1; xn) so x 2 E. Hence E is closed.

Similarly, F is closed.

Problem 493

Let Ar;s denote the annulus fz 2 C : r < jzj < sg. Show that A0;1 is not
conformally equivalent to A1;2.
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If there is a conformal equivalence f of A0;1 onto A1;2 then f extends to a
holomorphic function on U . Let f(0) = a. By open mapping theorem a 2 A1;2.
Let b 2 A0;1 with a = f(b). Let V1 and V2 be disjoint neighbourhoods of
0 and b respectively. Then f(V1) \ f(V2) is a nonempty open set. Let x 2
f(V1) \ f(V2)nfag. Then x = f(v1) = f(v2) for some v1 2 V1; v2 2 V2. Also
v1 6= 0 since x 6= a. Thus v1; v2 2 A0;1 and v1 6= v2. This contradicts the fact
that f is injective.

Problem 494

Show that a countable subset A of a real normed linear space X is connected
if and only if it is a singleton.

Note that x� 2 X� implies x�(A) is a connected countable subset of R,
hence a singleton set. say fcg. If a1; a2 2 A then x�(a1); x

�(a2) 2 fcg so
x�(a1) = x�(a2). This holds for all x� so a1 = a2.

Problem 495

Let A be an n � n complex matrix. Prove that if lim anAn exists and is
non-zero then lim an�n exists for every eigen value �. If A has n distinct real
eigen values show that a = 1

� for some eigen value �:

There exists a matrix S such that B � SAS�1 is upper triangular. Clearly,
lim anAn exists and is non-zero i¤ lim anBn exists and is non-zero. If this is
true then lim an�n exists each eigen value � because the diagonal elements of
B are the eigen values of A. If A has n distinct real eigen values then there
exists a basis consisting of eigen vectors and lim anAn exists and is non-zero i¤
lim an�n exists and is non-zero each eigen value �. This implies that a = 1

�
where � = maxf� : � is an eigen value of Ag.

Problem 496

If f 2 C([0; 1]) show that lim
n!1

(n+ 1)

1Z
0

xnf(x)dx = f(1).

If f(x) =
mX
k=0

akx
k then (n+ 1)

1Z
0

xnf(x)dx = (n+ 1)
mX
k=0

ak
1

k+n !
mX
k=0

ak =

f(1) as n!1. For the general case let " > 0 and let p be a polynomial such that

jf(x)� p(x)j < " for all x. Then

������(n+ 1)
1Z
0

xnf(x)dx� (n+ 1)
1Z
0

xnp(x)dx

������ �
"(n+ 1)

1Z
0

xndx = " and jf(1)� p(1)j < ". Second proof: Let jf(x)� f(1)j < "
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for 1� � � x � 1. Then (n+1)
1��Z
0

xn jf(x)j dx � (n+1)(1� �)n kfk1 ! 0 and

(n+ 1)

1Z
1��

xnf(x)dx� f(1) = (n+ 1)
1Z

1��

xn[f(x)� f(1)]dx� f(1)(1� �)n. Now������(n+ 1)
1Z

1��

xn[f(x)� f(1)]dx

������ � "(n+ 1)

1Z
1��

xndx � " and f(1)(1� �)n ! 0 as

n!1.

Problem 497

Show that any linear map T on Rn with n > 1 has a two dimensional
invariant subspace.

If T has an eigen value � with Im� 6= 0 there there exists x 2 Cnnf0g
such that Tx = �x. Let y and z be the vectors obtained by taking the real
and imaginary parts of the components of x. Then Ty = T (x+�x2 )Tx+(Tx)

�

2 =
�x+���x
2 = �(y+iz)+��(y�iz)

2 2 spanfy; zg since �+�� and i(����) are real. Similarly,
Tz 2 spamfy; zg. Hence spanfy; zg is invariant. Suppose now that all eigen
values of T are real. Let Tx = �x where x 6= 0. De�ne S : Rn=[x] ! Rn=[x]
by S(y + [x]) = Tx+ [x]. [ Here [x] denotes the span of fxg]. Then S is a well
de�ned linear map on the n�1 dimensional space Rn=[x] and it has an invariant
one dimensional subspace spanned by a vector z+[x]. [ Argue as before if there
is a complex eigen value. If there is a real eigen value then there is a real eigen
vector]. Now spanfx; zg is invariant for T .

Problem 498

Show that there is a continuous monotonic function f : (0; 1)! R such that
1Z
0

jf(x)j dx =1 and lim
n!1

n�1X
k=1

1
nf(

k
n ) exists (and is �nite).

Let f(x) = 1
x �

1
1�x . We have

n�1X
k=1

1
nf(

k
n ) =

n�1X
k=1

1
nf

n
k �

n
n�kg =

n�1X
k=1

f 1k �

1
n�kg =

n�1X
k=1

1
k �

n�1X
k=1

1
k = 0.

Problem 499

Let c be a complex number such that convergence of fa0+a1+:::+an�1+cang
implies that of fa0 + a1 + :::+ an�1 + ang. Show that either c = 0 or Re c > 1

2 .
Prove that the converse is also true.
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Let f(s) =
1X
n=0

ans
n; g(s) =

1X
n=0

bns
n and h(s) =

1X
n=0

cns
n where b0 =

ca0; bn = a0 + a1 + ::: + an�1 + can and cn = a0 + a1 + ::: + an�1 + an for

jsj � 1. Then (1 � s)h(s) = c0 +
1X
n=1

(cn � cn�1)s
n = a0 +

1X
n=1

ans
n = f(s).

Also (1 � s)g(s) = f(s) � (1 � c)(1 � s)f(s). [ This can be seen by comparing
coe¢ cients of sn]. Hence h(s) = f(s)

1�s =
g(s)

1�(1�c)(1�s) =
g(s)

c+s�cs . This equa-

tion holds for jsj < 1 and hence for jsj < minf1; jcj
j1�cjg;assuming c 6= 0; c 6= 1

we see that cn = coe¢ cient of sn in g(s)
c (1 +

1�c
c s )�1 � g(s)

c

1X
k=0

(� 1�c
c )

ksk

which is (�1)n
c fb0( 1�cc )

n + b1(
1�c
c )

n�1 + ::: + bng. We have proved that cn =
(�1)n
c fb0( 1�cc )

n + b1(
1�c
c )

n�1 + ::: + bng for all n. Now let f�ng be any con-
vergent sequence of complex numbers. Then we can choose fang such that
bn = �n for all n. It follows by hypothesis that fcng converges. It follows that
f 1cf�0(

c�1
c )

n+�1(
c�1
c )

n�1+ :::+�ngg converges whenever f�ng does. A stan-

dard argument using Uniform Boundedness Principle shows that
1X
k=0

�� c�1
c

��k <1
which means

�� c�1
c

�� < 1. Thus 1 + jcj2 � 2Re c < jcj2 so Re c > 1
2 . This proves

the direct part. For the converse let Re c > 1
2 . Assume c 6= 0. Then

�� 1�c
c

�� < 1
and so fcng = f 1cfb0(

c�1
c )

n + b1(
c�1
c )

n�1 + :::+ bngg converges whenever fbng
converges. The case c = 0 is trivial.

[ We have used the following theorem above: suppose f
nX
k=0

ak;nbkg converges

whenever fbng does. Then sup
n

nX
k=0

jak;nj <1. For a proof let X be the Banach

space of all convergent sequences of complex numbers with the supremum norm.

De�ne Tm : X ! C by Tmfbng =
mX
k=0

ak;mbk for m = 1; 2; :::. Note that

Tmfbng =
mX
k=0

jak;mj when bk = jak;mj
ak;m

if k � m and ak;m 6= 0; 1 if k � m and

ak;m = 0; bk = 0 for k > m. Since kfbngk = 1 we see that kTmk �
mX
k=0

jak;mj.

It su¢ ces, therefore to show that sup
m
kTmk < 1. However the sequence fTmg

of bounded operators on X converges at each point fbng of X and the result
follows by Uniform Boundedness Principle].

Problem 500

Let p(z) = a0 + a1z + ::: + anz
n with each aj > 0. Let � and � be the
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minimum and maximum of the numbers aj+1
aj

; 0 � j � n � 1. Show that every
zero z of p satis�es the inequalities 1

� � jzj �
1
� :

First consider a polynomial q(z) = b0 + b1z + ::: + bnz
n with b0 > b1 >

::: > bn > 0. If q(z) = 0 and jzj � 1 then 0 = j(1� z)(b0 + b1z + :::+ bnzn)j =��b0 + (b1 � b0)z + (b2 � b1)z2 + :::+ (bn � bn�1)zn � bnzn+1��
� b0�f(b0�b1)+(b1�b2)+ :::+(bn�1�bn)+bng = 0 and this forces z to be

1. Since q(1) 6= 0 it follows there is no zero of q in the closed unit disk. Now let
t > 0: Then p( zt ) = b0+ b1z+ :::+ bnz

n with bj =
aj
tj . If t > maxj

aj+1
aj

� � then

b0 > b1 > ::: > bn > 0. Thus p( zt ) = 0 implies jzj > 1. In other words every
zero � of p satis�es j�j > 1

t . This is true whenever t > �. Letting t! � we see
that j�j � 1

� for every zero � of p: Similarly considering p(
t
z ) with 0 < t < � we

see that j�j � 1
a for every zero � of p.

Problem 501

Let f : R2 ! R be continuously di¤erentiable with compact support. Show

that f(x+ iy) = � 1
�

ZZ
R2

( @
@x+i

@
@y )f(�)

2(��z) d�d� where � = � + i�; �; � real:

Let �(r; �) = f(z+rei�) and consider

1Z
"

Z 2�

0

f @dr+
i
r
@
@�g�(r; �)d�dr. As "! 0

this converges to 2
ZZ
R2

( @
@x+i

@
@y )f(�)

2(��z) d�d�. By periodicity we get
Z 2�

0

i
r
@�
@� d� = 0.

Hence � 1
�

ZZ
R2

( @
@x+i

@
@y )f(�)

2(��z) d�d�

= � 1
2� lim

1Z
"

Z 2�

0

@
dr�(r; �)d�dr = �

1
2� lim

Z 2�

0

f0��("; �)gd�. But �("; �)!

f(z) uniformly in � so we get � 1
�

ZZ
R2

( @
@x+i

@
@y )f(�)

2(��z) d�d� = f(z)

.

Problem 502

Let A be a subset of Rn such that every continuous real valued function on
it extends to a continuous function on �A. Show that A is closed, but need not
be compact.

The second part follows by taking A = N in R. For the �rst part suppose
fang � A; an ! a and a =2 A. Let f(an) = n; n = 1; 2; : : :. Since fang has
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no lmit points in A Tietze Extension Theorem shows that there is a continuous
function on A which extends f . This extended functions obviously does not
extend to a continuous function on �A.

Problem 503

Let A be a subset of C such that every continuous real valued function on
A can be approximated uniformly on A by polynomials in x and y. Show that
A is compact.
Remark: the converse of this follows immediately from Stone -Weirstrass

Theorem. See more remarks at the end of the solution below.

Let f : A! R be continuous. Let a 2 @A. Choose fang � A such that an !
a. Let " > 0. Let p be a polynomial such that jf(x)� p(x)j < " 8x 2 A. Since
fp(an)g is convergent, hence Cauchy there exists n0 such that jp(an)� p(am)j <
" 8n;m � n0. This gives jf(an)� f(am)j < 3" 8n;m � n0. Thus lim

n!1
f(an)

exists. Call this limit f(a). If fbng is another sequence in A converging to a
then ff(a1); f(b1); f (a2); f(b2) ; : : :g is Cauchy, hence convergent. This proves
that f(a) does not depend on the choice of fang. We have extended f to �A.
We claim that f is continuous on �A. Let fang and a 2 @A and an ! a.
Since p is continuous at a there exists � > 0 such that jp(x)� p(a)j < " if
jx� aj < �. We can �nd bn; b in A such that jf(an)� f(bn)j < "; jf(a)� f(b)j <
"; jan � bnj < �=2 and jb� aj < �=2. Now jf(an)� f(a)j � jf(an)� f(bn)j +
jf(bn)� p(bn)j+ jp(bn)� p(b)j+ jp(b)� f(b)j+ jf(b)� f(a)j < 5" for n so large
that jbn � bj < �

2 + jan � aj+ ja� bj < �. This proves that f is continuous. We
have proved that any continuous function on A extends to a continuous function
on �A. This implies that A is closed: suppose fang � A; an ! a =2 A. Then
fang is closed in A and Tietze Extension Theorem shows that there exists a
continuous function f on A such that f(an) = n 8n. This function does not
extend to a continuous function on �A. Thus, A is necessarily closed. Suppose
A is unbounded. Let f be a bounded continuous function on A. There exists a
polynomials pn; n = 1; 2 : : : such that jf(x)� pn(x)j < 1

n 8x 2 A. It follows that
pn is bounded on the unbounded set A and hence constant. Hence f = lim pn
is a constant too. Thus every continuous bounded function from A to R is a
constant. Let fang � A and janj ! 1. Applying Tietze Theorem again we see
that there exists a bounded continuous function g on A (in fact on C) such that
g(an) =

1
n 8n. This function is not constant.

Remarks: the proof shows that every continuous function on A extends to
a continuous function on �A if and only if A is closed. Approximating f by
polynomials in x+ iy is a di¤erent story altogether. 1z is continuous on T but it
cannot be approximated uniformly by polynomials in z. Mergelyan�s Theorem
says that if A is compact and CnA is connected the every continuous function
on A can be approximated uniformly on A by polynomials in z.

Problem 504
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Show that every sequence of real numbers has a monotone subsequence.

Let fang � R and E = fk : an � ak 8n > kg. [ Points of E are called the
peaks of fang]. If E is empty or �nite there exists k0 such that k > k0 implies
an > ak for at least one n > k. We can choose an increasing subsequence of
fang inductively in this case. Suppose E is an in�nite set. Let n1 < n2 < :::
with each nj 2 E. Then anj+1 � anj because nj 2 E and nj+1 > nj . Hence
fanjg is a decreasing subsequence of fang.

Problem 505

If A is a convex set in Rn show that A is closed if and only if A\L is closed
for every straight line L in Rn.

Using the results in my notes convexity.tex this problem is quite easy. Here
is a sketch: if A has an interior point (which may be assumed to be the origin)
then x 2 @A) the line L joining 0 and x intersects A in a line segment with x
as an end point. Since A \ L is closed it follows that x 2 A. Hence A is closed.
If A has empty interior then there is a lower dimensional space in which the
previous argument works.

Problem 506.

Let X be a real normed linear space with dimX � 2. Let x 6= 0 and � > 0.
Show that there exists y 2 X with kyk = � and kx+ yk2 = kxk2 + kyk2.

De�ne f : S � fy 2 X : kyk = �g !R by f(y) = kx+ yk2 � kxk2 � kyk2.

f is continuous and S is connected. Indeed, if y1 and y2 2 S; y1 6= y2; y1 6= �y2
then t ! � ty2+(1�t)y1

kty2+(1�t)y1k is a path in S connecting y1 and y2. If y1 = �y2
we can connect y1 and y2 to �

y1+y2
ky1+y2k . It follows now that the range of f is

an interval. Now f(� x
kxk ) = (kxk + �)2 � kxk2 � �2 = 2� kxk > 0 whereas

f(�� x
kxk ) = (kxk � �)

2 � kxk2 � �2 = �2� kxk < 0. We conclude that f must
vanish at some point y 2 S.

Problem 507 [Stability if linear independence]

Let fx1; x2; : : : ; xNg be linearly independent elements of a normed linear
space X. Show that there exists " > 0 such that kyi � xik < " for i = 1; 2; ::; N
implies fy1; y2; : : : ; yNg is linearly independent.

Suppose this is false. Fix " > 0. Choose vectors y1; y2; : : : ; yN and scalars

c1; c2; : : : ; cN not all 0 such that
NX
i=1

ciyi = 0 and kyi � xik < " for i = 1; 2; ::; N .
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Then


NX
i=1

cixi

 =

NX
i=1

ci(xi � yi)
 < "

NX
i=1

jcij. Denoting ci
NX
i=1

jcij

by di we get


NX
i=1

dixi

 < ". Note that
NX
i=1

jdij = 1. If we let "! 0 and use compactness of

f(d1; d2; : : : ; dN ) 2 RN :
NX
i=1

jdij = 1g we get
NX
i=1

tixi = 0 for some (t1; t2; : : : ; tN )

with
NX
i=1

jtij = 1. This contradicts the linear independence of fx1; x2; : : : ; xNg.

Problem 508

Let x1; x2; : : : ; xN be unit vectors in a real normed linear space X such

that


NX
i=1

cixi

 � M max
1�i�N

jcij for all c1; c2; : : : ; cN . Show that


NX
i=1

cixi

 �
(2�M) max

1�i�N
jcijfor all c1; c2; : : : ; cN .

De�ne T : (RN ; kk1) ! X by T (c1; c2; : : : ; cN ) =
NX
i=1

cixi. The hypothesis

says that kTk � M . Hence kT �k � M . It is easy to see that T � : X� !
(RN ; kk1) is given by T �x� = (x�(x1); x

�(x2); : : : :; x
�(xN )). Let max

1�i�N
jcij =

jcj j. Choose x� such that kx�k = 1 and x�(xj) = 1. Then


NX
i=1

cixi

 ������x�(
NX
i=1

cixi)

����� � jcj j � max
1�i�N

jcij
X
i 6=j

jx�(xi)j. We claim that
X
i 6=j

jx�(xi)j �M �

1. Since T �(x�) = (x�(x1); x
�(x2); : : : :; x

�(xN )) we have
NX
i=1

jx�(xi)j � M .

Combined with the fact that x�(xj) = 1 we get
X
i 6=j

jx�(xi)j �M �1 as claimed.

Now


NX
i=1

cixi

 � jcj j � max
1�i�N

jcij
X
i 6=j

jx�(xi)j � jcj j � (M � 1) max
1�i�N

jcij �

(2�M) max
1�i�N

jcij since max
1�i�N

jcij = jc1j.

Problem 509
If fang; fbng � R and an cosnt + bn sinnt ! 0 for all t in (a; b) for some

a < b show that an ! 0 and bn ! 0.
[ See also Problem 510]
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We have to show that a2n+ b
2
n ! 0. Suppose not. Then an cosnt+bn sinntp

a2n+b
2
n

! 0

along a subsequence and Dominated Convergence Theorem shows

bZ
a

jan cosnt+bn sinntj2
a2n+b

2
n

dt!

0 along a subsequence. Now

bZ
a

jan cosnt+bn sinntj2
a2n+b

2
n

dt =
a2n

a2n+b
2
n
( b�a2 + o(1)) +

b2n
a2n+b

2
n
( b�a2 +o(1))+ 2anbn

a2n+b
2
n
o(1). It follows that a2n

a2n+b
2
n

b�a
2 +

b2n
a2n+b

2
n

b�a
2 ! 0 along

a subsequence, which is absurd.

Problem 510

IfX is a real normed linear space, fxng[fyng � X and xn cosnt+yn sinnt!
0 for all t in some interval (a; b) show that xn ! 0 and yn ! 0.
Remark: weak convergence of fxng and fyng is trivial from previous prob-

lem. What is asserted here is norm convergence.

We compute

bZ
a

jx�(xn cosnt+ yn sinnt)j2 dt. We get (x�(xn))2( b�a2 +o(1))+

(x�(yn))
2( b�a2 + o(1)) + 2x�(xn)x

�(yn)o(1). Note that fxng and fyng are norm
bounded (because they converge to 0 weakly). Since the above integral tends to 0

(by DCT), (x�(xn))2+(x�(yn))2 ! 0. Now observe that

bZ
a

jx�(xn cosnt+ yn sinnt)j2 dt �

bZ
a

kxn cosnt+ yn sinntk2 dt if kx�k � 1 and

bZ
a

kxn cosnt+ yn sinntk2 dt ! 0

by DCT so (x�(xn))2+(x�(yn))2 ! 0 uniformly for kx�k � 1. This implies that
jx�(xn)j ! 0 uniformly for kx�k � 1 and jx�(yn)j ! 0 uniformly for kx�k � 1
and this completes the proof.

Problem 511

Let X = l1 and M = ffang 2 X : 0 = a1 = a3 = a5 = : : : :g. Show that any
non-zero continuous linear functional onM has in�nitely many norm preserving
extensions to X.

Let f be a non-zero continuous linear functional on M . By Hahn Banach
Theorem and the fact that (l1)� = l1 there exists a non-zero element fcng

of l1 such that f(fang) =
1X
i=1

aici =
1X
i=1

a2ic2i. Also kfk = sup
n
jcnj. How-

ever jf(fang)j =
�����
1X
i=1

a2ic2i

����� � kfangk sup
n
jc2nj so sup

n
jcnj � sup

n
jc2nj which
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implies kfk = sup
n
jcnj = sup

n
jc2nj. Let g(fang) =

1X
i=1

a2ic2i +
1X
i=1

�2i+1a2i+1

where f�2i+1g is an arbitrary bounded sequence with sup
���2n+1�� =

n

sup
n
jcnj. Of

course, distinct f�ng0s give distinct linear functionals g. We claim that each
one of these is a norm preserving extension of f . Of course, g extends f and
kgk � maxfsup

n
jc2nj ; sup

n

���2n+1��g = sup
n
jc2nj = kfk. This implies kgk = kfk.

Problem 512

Let f : (0; 1) ! R be continuous and

1Z
0

xnf(x)dx = 0 for n = 0; 1; 2; : : :.

Show that f(x) = 0 8x 2 (0; 1).

Let g(x) =

xZ
0

f(t)dt. Then

1Z
0

xng(x)dx =

1Z
0

xn
xZ
0

f(t)dtdx = xn+1

n+1

xZ
0

f(t)dtj10�

1Z
0

xn+1

n+1 f(x)dx =
1

n+1

1Z
0

f(t)dt = 0 and g 2 C([01]). Hence g � 0 which implies

f(x) = g0(x) = 0 for 0 < x < 1.

Problem 513

Let f be a continuously di¤erentiable function on [0; 1] with f(0) = f(1) = 0.
Show that kfk1 � 1

4 kf
0k1.

Let f1(x) = f(x); f2(x) = �f(x); f3(x) = f(1 � x) and f4(x) = �f(1 � x).
Then kfjk1 = kfk1 ; 1 � j � 4. Claim: fj(x) � (kf 0k1)x for 0 < x < 1; 1 �

j � 4. To see this observe that fj(x) =
xZ
0

f 0j(t)dt � (kf 0k1)x. It follows that

jf(x)j � (kf 0k1)x and jf(1� x)j � (kf 0k1)x so jf(x)j � (kf 0k1)(1�x). Hence

kfk1 � kf 0k1

1Z
0

minfx; 1� xgdx = 1
4 kf

0k1.

Problem 514

a) If f 2 C([0; 1]) show that
nX
k=0

1
nf(

k
n )!

1Z
0

f(x)dx

b) If f 2 C1([0; 1]) show that
nX
k=0

f( kn )� n
1Z
0

f(x)dx! f(1)�f(0)
2
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c) Give an example to show the conclusion of b) fails for some f 2 C([0; 1]).

Counter-example �rst: let �(x) =
�

x if 0 � x � 1
2

1� x if 12 � x � 1 and f(x) =
1X
k=0

�(2kx)
2k

.

We have
2nX
k=0

f( k2n ) =
2nX
k=0

1X
j=0

�(2j k
2n )

2j =
n�1X
j=0

2nX
k=0

�(k2j�n) 12j =
n�1X
j=0

2j�n+1
2n�j�1X
k=0

k =

2n�1 � 1
2 so

2nX
k=0

f( kn )� 2
n

1Z
0

f(x)dx = � 1
2 whereas

f(1)�f(0)
2 = 0:

a) is trivial.

b)
nX
k=0

f( kn )�n
1Z
0

f(x)dx =
nX
k=0

ff( kn )�n
k=nZ

(k�1)=n

f(x)dxg = n
nX
k=0

k=nZ
(k�1)=n

ff( kn )�

f(x)gdx

= n

nX
k=0

k=nZ
(k�1)=n

( kn�x)f
0(�k;x)dx = n

nX
k=0

k=nZ
(k�1)=n

( kn�x)ff
0(�k;x)�f 0( kn )gdx+

n
nX
k=0

k=nZ
(k�1)=n

( kn � x)f 0( kn )dx. Using uniform continuity of f 0 and the fact that

�������n
nX
k=0

k=nZ
(k�1)=n

( kn � x)dx

������� � 1 we see that the �rst term above can be made

arbitrarily small by choosing n su¢ ciently large. Note also that n
nX
k=0

k=nZ
(k�1)=n

( kn�

x)f 0( kn )dx = n
nX
k=0

f 0( kn )

k=nZ
(k�1)=n

( kn � x)dx = n
nX
k=0

f 0( kn )
1
2n2 !

1
2

1Z
0

f 0(y)dy =

f(1)�f(0)
2 .

Problem 515
Show that f : [a; b] ! R is absolutely continuous if and only if given " > 0

there exists � > 0 such that for any �nite disjoint collection of intervals f(ai; bi) :

1 � i � kg with
kX
i=1

(bi � ai) < � we have

�����
kX
i=1

ff(bi)� f(ai)g
����� < ".
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Consider those intervals (aj ; bj) for which f(bi)� f(ai) � 0. Since the sum
of the lengths of these intervals is less than � we get

P
jf(bj)� f(aj)j < " where

the sum if taken over these intervals. Similar argument holds for intervals with

f(bi) � f(ai) < 0. Hence
kX
j=1

jf(bj)� f(aj)j < 2" proving that f is absolutely

continuous.

Problem 516
Show that f : [a; b] ! R is Lipschitz if and only if given " > 0 there exists

� > 0 such that for any �nite collection of intervals f(ai; bi) : 1 � i � kg with
kX
i=1

(bi � ai) < � we have
kX
i=1

jf(bi)� f(ai)j < ".

Note that the intervals are not necessarily disjoint. Let " = 1 and choose �
correspondingly. Let a < b. Consider the points t0 = a; t1 = a + �

2n ; : : : ; tm =

a + m�
2n and tm+1 = b where m is de�ned by the inequalities tm � b <

a + (m+1)�
2n . Considering the collection (tj�1; tj); (tj�1; tj); : : : ; (tj�1; tj) ( the

interval (tj�1; tj) repeated n times) we get n jf(tj)� f(tj�1)j < 1. Hence

jf(b)� f(a)j �
X

jf(tj)� f(tj�1)j < m
n . Note that m � 2n(b�a)

� < m + 1

so jf(b)� f(a)j � 2(b�a)
� .

Problem 517

Suppose f : [0; 1]! R is continuous. If f 0(x) = 0 for all irrational numbers
x show that f is a constant. What if f 0(x) = 0 a.e.?

We prove that if f 0 = 0 except on a countable set A then f is a constant.
Suppose f is not a constant. Then there exists x0 > 0 such that � � f(x0) �
f(0) 6= 0. Replacing f by �f if necessary we may assume that � > 0. Let
0 < t < �. For 0 < � < a�t

x0
de�ne g�(x) = f(x) � f(0) � �x. Note that

g�(x0) = � � �x0 > t. Let �� = supfx 2 (0; x0) : g�(x) � tg. Clearly,
0 < �� < x0. We claim that g�(��) = t. Assuming this for the moment consider
the map � 2 (0;minfa�tx0

; 1g) ! �� . Call this map �. If �(�1) = �(�2) then
��1 = ��2 and g�1(��1)� g�2(��1) = g�1(��1)� g�2(��2)
= t � t = 0 which gives f(�1) � f(0) � �21 = f(�1) � f(0) � �2�1 which

implies �1 = �2. We get the desired contradiction by showing that �� must
be in the countable set A. Otherwise f 0(��) = 0. However 0 < h < x0 � ��

implies g�(�� + h) > t = g�(��) (by the claim) so
g�(��+h)�g�(��)

h > 0 whereas
0 = f 0(��) = �+g0�(��) so g

0
�(��) < 0, a contradiction. It remains now to prove

the claim. If g�(��) < t then g�(z) = t for some z 2 (�� ; y) where y 2 (0; x0)
and g�(y) > t. [ y exists because g�(x0) > t and g� is continuous. z exists by
intermediate value property]. But this contradicts the de�nition of �� . Since
g�(��) � t [by continuity of g� and the de�nition of �� ] the claim is proved.
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Problem 518

Suppose f : [0; 1] ! R is continuous. If f 0(x) exists and is non-negative for
all irrational x show that f is monotonically increasing. What if f 0(x) exists
and is non-negative a.e.?

We prove that if f 0(x) exists and is non-negative except on a countable set
A then f is monotonically increasing.
Since d

dxff(x) + "xg > 0 outside A and f is be increasing if f(x) + "x is
increasing for each " > 0 we may assume that f 0(x) exists and is strictly positive
outside A. We assume that f(b) < f(a) with a < b and arrive at a contradiction.
Since (f(b); f(a)) is uncountable it is not contained in the countable set f(A).
Let u 2 (f(b); f(a))nf(A). Let � = supfx 2 [a; b] : f(x) � ug. Then � < b.
[ The set de�ning � is non-empty because f � u near a. Since f < u near
b we must have � < b]. By continuity we have f(�) = u. For any � > 0;
supff(x) : x 2 [a; �) \ (� � �; �)g � u by de�nition of �. Letting � ! 0 we
get a sequence fxng " � such that f(xn) > f(�) 8n (because u > f(�)). But
then f(�)�f(xn)

��xn < 0 which implies that � 2 A. Hence u = f(�) 2 f(A), a
contradiction.

Problem 519

Let f 2 C([0; 1]); 0 < c < 1 and lim
h2Q;h!0

f(c+h)�f(c)
h = l(2 R). Show that

f 0(c) = l.

Let "; � > 0. By uniform continuity there exists h� 2 Q such that jf(c+ �)� f(c+ h�)j <
"� and jh� � �j < �2. We have

��� f(c+�)�f(c)� � l
��� � ��� f(c+h�)�f(c)� � l

���+��� f(c+�)�f(c+h�)�

��� <��� f(c+h�)�f(c)� � l
���+ " < 2" if � is su¢ ciently small.

Problem 520

Let f : R! R be continuous and jf(x)� f(y)j � a jx� yj 8x; y where a > 0.
What can you say about the range of f?

f is necessarily surjective: its range is an interval. Since f is injective and
continuous, it is monotonic. We may suppose f is increasing in which case
f(na) � na by induction so f is unbounded above. Similarly the inequality
f(x) � f(y)� a(y � x) for x < y shows that f is unbounded below. Hence f is
a homeomorphism of R.

Problem 521

Prove or disprove: any continuous one-to-one function from Q into itself is
monotone.
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[ Recall that any continuous one-to-one function from R into itself is monotone].

False: let f(x) =

8<:
x
4 if x <

p
2

1
x if

p
2 < x < 2

p
2

3x if x > 2
p
2

. f is decreasing in (
p
2; 2
p
2) and

increasing in (2
p
2,1). It is clearly continuous and one-to-one on Q.

Problem 522

Let p be a polynomial with real coe¢ cients. If all the roots of p are real
show that pp00 � (p0)2. Is this true even if p has non-real roots?

Let p(x) =
nY
k=1

(x�ak) with a0ks real: Then p0(x) = p(x)

nX
k=1

1
x�ak and p

00(x) =

p0(x)
nX
k=1

1
x�ak � p(x)

nX
k=1

1
(x�ak)2 . Hence p(x)p00(x) � p(x)p0(x)

nX
k=1

1
x�ak =

(p0(x))2. For p(x) = x2 + 1 we have p(x)p00(x) = 2(x2 + 1) > 4x2 = (p0(x))2

when jxj < 1.

Problem 523

a) Let E be a measurable subset of R such that E + 1
n = E 8n � 1. Show

that m(E) = 0 or m(Ec) = 0.

b) Let f : R! R be Lebesgue measurable, f(x+ �) = f(x) 8x; f(x+ �) =
f(x) 8x where �; � are non-zero real numbers with �

� irrational. Prove that f
is a.e. constant. Give an example to show that f need not be a constant.

a) Let m(E) > 0; a 2 R and f(x) = m(E \ [a; x]) for a � x < 1. If
a < x < y then f(y + 1

n )� f(x+
1
n ) = m(E \ (x+ 1

n ; y +
1
n ])

= m(fE � 1
ng \ (x; y]) = m(E \ (x; y]) and f(y � 1

n ) � f(x � 1
n ) = m(E \

(x� 1
n ; y �

1
n ])

= m(fE+ 1
ng\ (x; y]) = m(E\ (x; y]). It follows that f(y+ 1

n )�f(x+
1
n ) =

f(y � 1
n ) � f(x � 1

n ) . Note that jf(y)� f(x)j � jy � xj so f is absolutely
continuous. Hence it is di¤erentiable almost everywhere and using above equa-
tion we conclude that its derivative is a constant c a.e.. Since m(x��;x+�)

2� =
f(x+�)�f(x��)

2� and almost all points of E have metric density 1 we see that c = 1

Thus f(y)� f(x) =

yZ
x

f 0(t)dt = y � x. This gives f(y) = f(a) + y � a 8x > a.

Thus f(y)� f(x) = y�x or m(E \ (x; y]) = m((x; y]) for a < x < y. This gives
m(Ec \ (x; y]) = 0 for a < x < y which clearly implies that m(Ec) = 0.

b) Let E = fx : f(x) < ag. Then E + t = E for t of the form n� + m�
(n;m 2 Z). There is a sequence ftjg of numbers of this type decreasing to 0
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since numbers of the form n� + m� (n;m 2 Z) form a dense subset of Rby
Problem 87 above).
It is clear that the sequence f 1ng in part a0 can be replaced by any sequence

of positive numbers converging to 0. Since E + tj = E for each j it follows that
m(E) = 0 or m(Ec) = 0. We have proved that for any real number a either
f < a a.e or f � a a.e.. If c = supfa : mfx : f(x) < ag = 0g it follows easily
that f = c a.e.. If f is the indicator function of fn

p
2 + m

p
3 :n;m 2 Zg it

follows that f has
p
2 and

p
3 as periods but f is not a constant.

Problem 524

Prove that any set of positive (Lebesgue) measure in R contains a non-
mesurable set.

Let E be a bounded measurable set of positive measure. LetD be a countable
in�nite subset of E. Let H be the subgroup of R generated by D. [ H consists

of �nite sums
mX
j=1

njdj where m is a positive integer, n0js are integers and d
0
js

belong to D]. Enumerate the distinct cosets of H as fH + ti : i 2 Ig. Let
J = fi 2 I : (H + ti) \ E 6= ;g. Pick an element xj in (H + tj) \ E for

each j 2 J . Let L = fxj : j 2 Jg. Note that E �
[
j2J
(H + tj). Since E is

uncountable and H is countable it follows that J must be uncountable too. Let
S = H \ (E � E). Then D �D � S � H and S is countable. We claim that
the sets s+L (s 2 S) are disjoint. Suppose s1 6= s2 and (s1+L)\ (s2+L) 6= ;.
Then there exist l1; l2 2 L such that l2 = s1+ l1� s2 2 l1+H and l1 6= l2. This
contradicts the fact that H + ti; i 2 I are disjoint (so that l1 +H and l2 +H
are disjoint since H + xj = tj + H for each j and ). This proves the claim.
We claim that L is a non-measurable subset of E. Suppose L is measurable.
If m(L) > 0 then m(S + L) =

X
s2S

m(s + L) = 1 and if m(L) = 0 then

m(S + L) =
X
s2S

m(s + L) = 0. We now prove that m(S + L) can neither be 0

nor be 1. Let us �rst prove that E � S + L. If x 2 E then x 2 (H + ti) \ E
for some i 2 I. This implies i 2 J . Recalling that xi 2 (H + ti) \ E we see
that x 2 H + xi. Let h = x � xi so h 2 H. Since x � xi 2 E � E we get
h 2 H \ (E � E) = S. Now x = xi + h 2 L+ S. This proves that E � S + L.
It follows that m(S + L) cannot be 0. It cannot be 1 either because S + L is
bounded: S+L � H \ (E�E)+E � E�E+E and E is bounded. The proof
is complete.

Problem 525

Show that a continuous function f : [a; b] ! R maps Lebesgue measurable
sets to Lebesgue measurable sets if and only if it maps Lebesgue null sets to
Lebesgue null sets
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Suppose f maps Lebesgue null sets to Lebesgue null sets. If E is measurable
then E =

[
n

Kn [ D with K 0
ns compact and D null. It follows that f(E) =[

n

f(Kn) [ f(D) is measurable. Conversely suppose f maps Lebesgue measur-

able sets to Lebesgue measurable sets. Let E be a null set. If m(f(E)) > 0
then there is a non-measurable set S � f(E). [ See Problem 524 above]. Now
S = f(f�1(S) \ E); f�1(S) \ E is a null set whose image is not measurable.

Problem 526

Prove that lim sup
n!1

cosnx = 1 for every x 2 R.

If x
2� is irrational then fn

x
2� +m : n;m 2 Zg is dense in R. Let � > 0 and

choose � > 0 such that jyj < � implies cos y > 1� �. There exists n;m 2 Z such
that

��n x
2� +m

�� < �
2� , so jnx+ 2�mj < �. We get cosnx = cos jnx+ 2�mj >

1 � � and we may (by changing m to �m if necessary) that n is positive. If
x
2� = p

q with p; q integers then cosnx = 1 whenever n is a multiple of q so
lim sup
n!1

cosnx = 1.

Remark: the following more general result is true: if f is measurable function
with period 1 then lim sup

n!1
f(nx) = ess: sup of f on [0; 1] for almost all x. [M.

Eidelheit, 1937]

Problem 527

For any measurable function f : [0;1) ! C show that
1Z
0

jf(x)j2
1+x2 dx � ( 12 +

�)sup
�

1
�

�Z
0

jf(t)j2 dt.

Let g(x) =

xZ
0

jf(t)j2 dt. Then
�Z
0

jf(x)j2
1+x2 dx = g(x) 1

1+x2 j
�
0 +

�Z
0

g(x) 2x
(1+x2)2 dx =

g(�)
1+�2 +

�Z
0

g(x)
x

2x2

(1+x2)2 dx. Hence

�Z
0

jf(x)j2
1+x2 dx �

g(�)
1+�2 +

�Z
0

g(x)
x

2(1+x2)
(1+x2)2 dx =

g(�)
1+�2 + 2

�Z
0

g(x)
x

1
1+x2 dx �

g(�)
2� +

(sup g(�)� )2 tan�1� � ( 12 + �)(sup
g(�)
� ).

Problem 528
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Prove that the maps f ! ff̂(n)g from L1([0; 2�]) into c0 [ the spaces of
sequences converging to 0 with sup. norm] and f ! f̂ from L1(R) to C0(R) [
where C0(R) is the space of continuous functions which vanish at �1 with the
sup norm] do not have closed range.

If they have closed range they would have bounded inverses and there would

be constants C1; C2 such that kfk1 � C1 supf
���f̂(n)��� : n 2 Zg; kfk1 � C1 supf

���f̂(t)��� :
t 2 Rg. To get a contradiction from the �rst inequality use the fact that

kDnk1 ! 1 as n ! 1 where as
���D̂n(k)

��� � 1 8n; k. For the second part let
gn = I(�n;n): Consider fn(t) � fgn � g1g^(t) = ĝn(t)ĝ1(t) =

1
2�

2 sinnt
t

2 sin t
t =

2
�
sin t sinnt

t2 . Since fn 2 L1 for each n we have f̂n = gn � g1 and
���f̂n(t)��� � q 2

� .

It su¢ ces to show that kfnk1 ! 1 as n ! 1. We have
Z �� sin t sinnt

t2

�� dt =
n

Z ��� sin s
n sin s

s2

��� ds � n

Z �

��

��� sin s
n sin s

s2

��� ds � 2n �Z
0

2
�
s
n

�� sin s
s2

�� ds = 4
�

�Z
0

�� sin s
s

�� ds pro-
vided �

n < �
2 . Since

1Z
0

�� sin s
s

�� ds =1 it follows that kfnk1 !1 as n!1.

Problem 529

Let f be a right continuous function of bounded variation on R and � be
the real measure with �(�1; x] = f(x) 8x. Show that j�j (R) = Vf , the total
variation of f .

It is obvious that Vf � j�j (R). For the reverse inequality it su¢ ces to show

that
NX
j=1

j�(Ej)j � Vf for any �nite disjoint collection fE1; E2; : : : ; ENg of Borel

sets. By regularity of j�j it su¢ ces to prove this when the sets E1; E2; : : : ; EN
are disjoint compact sets: In this case we can separate these compact sets by
disjoint open sets Vj ; 1 � j � N . By the basic approximation theorem we
can approximate �(Ej) by �(Fj) where Fj is a �nite disjoint union of left-open
right-closed intervals lying in Vj . Thus the proof is reduced to the inequality
NX
j=1

j�(Ej)j � Vf when the sets are disjoint half-open intervals. This last fact is

obviously true.

Problem 530

Let f : [0; 2�]! C be a function of bounded variation. Show that

������ 12�
2�Z
0

f(x)e�inxdx

������ �
Vf
jnj for all n 2 Znf0g, Vf being the total variation of f .
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Remark: periodicity of f is not required for this result.

Without loss of generality we may suppose f is right continuous and f(0) =
0. There exists a real measure � such that �[0; x] = f(x) 8x. There exists a a real

measure � such that d�
dm = e�inx. Since �(R) = 0 for n 6= 0we get

2�Z
0

f(x)d�(x) =

�
2�Z
0

�[0; x)d�(x). Hence

������ 12�
2�Z
0

f(x)e�inxdx

������ � 1
2�

������
2�Z
0

e�inx�1
�in d�(x)

������ � 1
�jnj j�j (R) =

Vf
�jnj by Problem 529.

Problem 531

Give a proof of the uniqueness theorem and the basic approximation theorem
of measure theory which does not use outer measures and the extension theorem.

Let � be a positive measure on (
;F) and let A be an algebra that generates
F . Let f 2 L2(�); f � 0 and suppose f is orthogonal to the spaces M =

f
NX
j=1

ajIAj
: N � 1; a0js 2 C; A0js 2 Ag. Then

Z



fd� = 0 ( f is integrable!)

and fA 2 F :
Z
A

fd� = 0g is a sigma algebra containing A. Hence it contained

F and f = 0 a.e.. Thus every non-negative L2 function belongs to the closure
of M in L2(�). The same is true of every function in L2(�). If f 2 L2(�) there
exists ffng � M such that kfn � fk2 ! 0. In particular if " > 0; A 2 F and

�(A) <1 then there exists a simple function
NX
j=1

ajIAj (N � 1; a0js 2 C; A0js 2

A) such that
Z ������IA �

NX
j=1

ajIAj

������ d� < ". It is easy to see that if aj =2 f0; 1g then

�(A�Aj) = 0. Hence
Z
jIA � IB j d� < " for some B 2 A.

Problem 532
Show that no set of positive Lebesgue measure is a set of uniqueness for

Fourier series, i.e. m(E) > 0) there exists f 2 L1[0; 2�] such that
1X

n=�1
f̂(n)einx =

0 for every x 2 [0; 2�]nE but f̂(n) 6= 0 for at least one n.

Let f = IK whereK is a compact subset of E withm(K) > 0. By Riemann�s
Localization Theorem the Fourier series of f and that of the zero function have
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the same sum (namely 0) at every point of Kc. It follows that the Fourier series

of f has sum 0 at every point of Ec. However f̂(0) = 1
2�

2�Z
0

IKdm > 0

Problem 533

Prove that a continuous function � : (a; b) ! R is convex if and only if
lim sup
h#0

�(x+h)+�(x�h)�2�(x)
h2 � 0 8x 2 (a; b). As a corollary a twice di¤erentiable

function if convex i¤ its second derivative is non-negative.

If � is convex and f is its right-hand derivative then �(x+ h) + �(x� h)�

2�(x) =

x+hZ
x

f(t)dt�
xZ

x�h

f(t)dt

=

x+hZ
x

f(t)dt�
x+hZ
x

f(t�h)dt � 0 since f(t)�f(t�h) � 0. Now suppose lim sup
h#0

�(x+h)+�(x�h)�2�(x)
h2 >

0. Suppose �(�t+(1��)s) > ��(t)+(1��)�(s) for some a < t < s < b and some
� 2 (0; 1). Let  (x) = �(x) � �(t) � x�t

s�t f�(s) � �(t)g. Then  (t) =  (s) = 0
and  is continuous. Also  (�t + (1 � �)s) > 0. Hence there exists c 2 (t; s)
such that  (c) = supf (y) : t � y � sg. This implies  (x+h)+ (x�h)�2 (x)

h2 � 0
and this yields �(x+h)+�(x�h)�2�(x)

h2 � 0 for all su¢ ciently small h > 0, con-

tradicting the assumption that lim sup
h#0

�(x+h)+�(x�h)�2�(x)
h2 > 0. We have now

proved that the condition lim sup
h#0

�(x+h)+�(x�h)�2�(x)
h2 > 0 implies convexity of

�. Now suppose lim sup
h#0

�(x+h)+�(x�h)�2�(x)
h2 � 0. If �1(x) = �(x) + "x2 then

lim sup
h#0

�1(x+h)+�1(x�h)�2�1(x)
h2 � 2 and hence �1 is convex for every " > 0.

Letting "! 0 we conclude that � is convex.

Problem 534

If f 2 L1(R) \ L1(R) and f̂ � 0 show that f̂ 2 L1(R) and f(x) =

1p
2�

1Z
�1

f̂(t)eitxdt a.e. Is this true if the hypothesis that f 2 L1(R) is dropped?

The second part is just the inversion formula. To show that f̂ 2 L1(R)

let d�(x) = dxp
2�
and consider

Z
f̂(t)e�

jtj
n dt =

Z
f
Z
f(x)e�itxd�(x)ge�

jtj
n dt =R

f
R
e�itxe�

jtj
n dtgf(x)dx =

R
1
�

n
1+n2x2 f(x)dx so

Z
f̂(t)e�

jtj
n dt � kf1k 8n. We

have used Fubini, the fact that
R
e�itxe�

jtj
n dt = 1

�
n

1+n2x2 (which follows by two
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integrations by parts) and the fact that
R
1
�

n
1+n2x2 dx = 1. Letting n ! 1

we conclude that
R
f̂(t)dt � kfk1. If f 2 L1(R) and f̂ � 0 it does not

follow that f̂ 2 L1(R). In fact for any f 2 L1(R)nL1(R) the function g(x) =

1p
2�

1Z
�1

f(x � y) �f(�y)dy is in L1(R) and ĝ(t) =
���f̂(t)���2 � 0. If ĝ 2 L1(R) then

f̂ 2 L2(R) which implies f 2 L2(R), a contradiction.

Problem 535

If f 2 L1(R); g 2 L2(R) and f̂ = ĝ a.e. show that f = g a.e.

Remark: an "elementary" proof is expected, one that does not use distribu-

tion theory; ĝ is de�ned via Plancherel Theorem and f̂(t) = 1p
2�

1Z
�1

f(x)e�itxdx.

1. Let � 2 L1(R)\L2(R)\L1(R) and consider the functions f �� and g ��.
Since f � � 2 L1(R) \ L1(R) it follows that these two functions are both
in L2(R) and they have the same Fourier transform. Hence f � � = g � �
a.e. Now let �n(x) =

p
np
2�
e�nx

2=2. These functions form an approximate

identity in L1(R) and hence f � �n ! f at Lebesgue points of f . Also
(g � �n)^ = ĝ�̂n ! ĝ in L2(R) because �̂n(t) = e�x

2=2n ! 1 boundedly.
It follows that g � �n ! g in L2(R) which yields a.e. convergence for a
subsequence. Hence f = g a.e.

Problem 536

Let f : R ! C be a measurable function such that fy = f a.e. for every y;
where fy(x) = f(x� y). Show that there is a constant c such that f = c a.e..

This is a simple consequence of Fubini:
R R

jf(x� y)� f(x)j dxdy = 0 which
implies

R R
jf(x� y)� f(x)j dydx = 0; hence there x0 such that

R
jf(x0 � y)� f(x0)j dy =

0 or
R
jf(t)� f(x0)j dt = 0 so f = f(x0) a.e..

Problem 537 (Bump functions)

a) Show that there exists a C1 function on R which is 0 on (�1; 0], 1 on
[1;1) and has its range [0; 1].
b) Show that there exists a C1 function on R which is 0 on (�1;�2][[2;1),

1 on [�1; 1] and has its range [0; 1].
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For a) take f(x) =

8<:
0 if x � 0
1 if x � 1

[1 + e1=t

e1=(1�t)
]�1 if 0 < x < 1

.

For b) take g(x) =

8>><>>:
0 if x � �2 or x � 2
1 if � 1 � x � 1

f(x+ 2) if � 2 < x < �1
f(x� 2) if 1 < x < 2

where f is the function in

a):

Problem 538

Consider a function  in L2(R) such that <  ; (2nx�k) >= 0 8n 2 N;8k 2
Z (where <;> is the inner product in L2(R)). Show that such a function cannot
be a C1 function with compact support unless  � 0.

Remark: in the language of Multi Resolution Analysis of wavelets this says
there is no smooth wavelet with compact support for a Multi Resolution Analy-
sis.
Suppose <  ; (2nx � k) >= 0 8n 2 N;8k 2 Z;  is C1 and has support

in [��:�]. Consider
R
 (a + x

2n )
� (x)dx. If a is a dyadic rational then this

integral is 0 for n su¢ ciently large because 2n
R
 (y)� (2n(y � a))dy = 0 if 2na

is an integer which is true for all n su¢ ciently large if a is a dyadic rational. Now
 (a + x

2n ) !  (a) as n ! 1 boundedly for �� � x � �. Hence  (a)
R
� =

lim
R
 (a+ x

2n )
� (x)dx = 0 whenever a is a dyadic rational. It follows that if  is

not identically 0 then
R
 = 0. We next show that

R
x (x)dx = 0. Let f(x) =

xZ
�1

� (t)dt =

xZ
��

� (t)dt. Then 0 =
R
 (a + x

2n )
� (x)dx =  (a + x

2n )f(x)j
1
�1 �

1
2n

�Z
��

 0(a + x
2n )f(x)dx: The fact that

R
 = 0 implies that f vanishes outside

[��:�]. Also
xZ

��

 0(a+ x
2n )f(x)dx !  0(a)

R
f(x)dx. If  0 vanishes on dyadic

rationals it vanishes everywhere and this makes  a constant function with
compact support! It follows that if  is not identically 0 then

R
f = 0. HoweverR

f =

�Z
��

xZ
��

 (t)dtdx =

�Z
��

�Z
t

 (t)dxdt =

�Z
��

(�� t) (t)dt = �
R
 �

R
t (t)dt.

It follows that
R
t (t)dt = 0. If g(x) =

xZ
�1

f(t)dt then

�Z
��

 0(a + x
2n )f(x)dx =
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 0(a + x
2n )g(x)j

1
�1 �

�Z
��

 00(a + x
2n )g(x)dx so

�Z
��

 00(a + x
2n )g(x)dx = 0 for

n su¢ ciently large if a is a dyadic rational. Since the only polynomial (of
degree 0 or 1) which has compact support is the zero function we conclude as

before that

�Z
��

g(x)dx . This yields

�Z
��

�2�t2
2  (t)dt = 0 so

�Z
��

t2 (t)dt = 0. An

induction argument shows that

�Z
��

tn (t)dt = 0 for every positive integer n. [

The induction hypothesis is
R
tn (t)dt = 0 and

�Z
��

 (n)(a + x
2n )fn(t)dt = 0 for

n su¢ ciently large whenever a is a dyadic rational where fk+1(x) =

�Z
��

fk(t)dt

and f0 = � ]. It follows by Weierstrass Theorem that
R
h = 0 for every

h 2 C[��;�]. Hence, taking h = � we get  � 0.

Problem 539

Let f 2 L2(R). Show that the following two conditions are equivalent:

a) f 2 C1(R) and f 0 2 L2(R)

b) xf̂(x) 2 L2(R).

Proof of a) implies b): we claim that ixf̂(x) = (f 0)^ from which b) follows.

We have f2(x) � f2(0) = 2

xZ
0

f(t)f 0(t)dt. Since f and f 0 belong to L2(R) it

follows that ff 0 is integrable so the right side has a �nite limit l as x ! 1.
It follows that f2(x) ! l + f2(0) as x ! 1. The fact that f2 2 L1(R) show
that l + f2(0) = 0 and f(x) ! 0 as x ! 1. Similarly f(x) ! 0 as x ! �1.

Now consider

�Z
��

f 0(t)e�itxdt = f(t)e�itxj��� + it

�Z
��

f(t)e�itxdt. Letting � !

1 we get (f 0)^(t) = 0 + itf̂(t) since

�Z
��

f 0(t)e�itxdt ! (f 0)^(t) in L2(R) and

�Z
��

f(t)e�itxdt! f̂(t) in L2
�Z

��

f(t)e�itxdt.
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b) implies a): f̂ and xf̂(x) belong to L2(R) and hence f̂ 2 L1(R). [ IndeedR ���f̂ ��� � Z
fjxj�1g

���f̂ ��� + Z
fjxj>1g

1
jxjf
���xf̂ ���g and both terms are �nite by Holder�s in-

equality]. Hence f(x) = 1p
2�

1Z
�1

f̂(t)eitxdx 8x and f 0(x) = 1p
2�

1Z
�1

itf̂(t)eitxdx

by a simple application of Dominated Convergence Theorem. Thus f is contin-
uously di¤erentiable and f 0(�x) is ĝ(x) where g(x) = ixf̂(x) . Since g 2 L2(R)
we get f 0 2 L2(R).

Problem 540

Prove the following version of the Inversion Formula For Fourier Transforms
of L1 Functions:

Let f 2 L1(R). Fix x 2 R. Show that lim
�!1

�Z
��

eitxf̂(t)dt = 0 if f(x+t)+f(x�t)t

is integrable on (��; �) for some � > 0. Hence show that if f(x+t)+f(x�t)�2f(x)t

is integrable on (��; �) for some � > 0 then lim
�!1

�Z
��

eitxf̂(t)dt = f(x).

Remark: if f is di¤erentiable at x then the integrability condition is satis-
�ed. What we have here is the Dini�s test for convergence of Fourier integrals.
Jordan�s test is also available; c.f. Pinsky book or Titchmarsh (Introduction to
Theory of Fourier Integrals).
Note that if f 2 L1(R) and f̂ � 0 then f � �n is di¤erentiable at 0 and its

Fourier transform vanishes identically, where �n(x) =
p

n
2� e

�nx2=2. It follows
by this problem that f � �n = 0 8n and since f � �n ! f in L1(R) we see that
f = 0. Thus a uniqueness theorem for Fourier transforms of L1(R) functions
follows from this problem.

We have

�Z
��

eitxf̂(t)dt =

�Z
��

eitx
1Z

�1

f(y)e�ityd�(y)dt =

1Z
�1

f(y)

�Z
��

e�ityeitxdtd�(y) =

1Z
�1

f(y) 2 sin�(x�y)(x�y) d�(y)

=

1Z
�1

f(x�y) 2 sin�yy d�(y). Clearly this implies

�Z
��

eitxf̂(t)dt =

1Z
�1

f(x�y)+f(x+y)
2

2 sin�y
y d�(y)!

0 by Riemann Lebesgue Lemma since f(x�y)+f(x+y)
2y is integrable on (��; �) as

well as on the complement of this interval.
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Now suppose f(x+t)+f(x�t)�2f(x)
t is integrable on (��; �) for some � > 0.

Let g(t) = f(t) � f(x)ex
2=2e�t

2=2. We claim that the �rst part applies to g

in place of f so lim
�!1

�Z
��

eitxĝ(t)dt = 0; Since ĝ(t) = f̂(t) � f(x)ex
2=2e�t

2=2

we get lim
�!1

�Z
��

eitxf̂(t)dt = f(x)ex
2=2 lim

�!1

�Z
��

eitxe�t
2=2dt = f(x). It remains

to verify that g(x+t)+g(x�t)
t is integrable on (��; �) for some � > 0. Since

g(x+t)+g(x�t)
t = f(x+t)+f(x�t)

t �f(x)ex2=2 e�(x+t)
2=2+e�(x�t)

2=2

t = f(x+t)+f(x�t)
t �

f(x) e
�t2=2[ext+e�xt]

t we only have to show that 2
t �

e�t
2=2[ext+e�xt]

t is integrable
in a neighbourhood of 0. This is clearly true.

Problem 541

Let f 2 L2(R) and S�f(x) =
�Z

��

f̂(x)eitxd�(x). Show that

bZ
a

S�f(x)dx !

bZ
a

f(x)dx whenever �1 < a < b <1.

A simple Fubini argument shows < S�f; g >=< f; S�g > 8f; g 2 L1(R).
Note that kS�fk2 =

I[��;�]f̂
2
�
f̂

2
= kfk2. It follows that the formula

< S�f; g >=< f; S�g > holds 8f; g 2 L2(R). Now put g = I(a;b). We get
bZ
a

S�f(x)dx =< S�f; g >=< f; S�g >. Now S�g ! g in L2(R) because

I[��;�]ĝ ! ĝ in L2(R) so S�g(x) ! (ĝ)^(�x) = g(x). Hence < f; S�g >!<

f; g >=

bZ
a

f(x)dx.

Problem 542

Let � be a complex Borel measure on the unit circle T in the complex plane
such that

R
z�nd�(z)! 0 as n!1. Show that

R
znd�(z)! 0 as n!1.

In particular, if f 2 L1(T ) then f̂(n) ! 0 as n ! 1 i¤ f̂(n) ! 0 as
n! �1.

Consider
R
z�np(z)d�(z) where p(z) =

NX
k=�N

ckz
k for some positive integer

N and some complex numbers c�N ; : : : ; cN . Since
R
z�nzkd�(z)! 0 as n!1
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for each k it follows that
R
z�np(z)d�(z) ! 0. By Stone - Wierstrass Theo-

rem polynomials form a dense subset of C(T ) w.r.t. the sup. norm. HenceR
z�ng(z)d�(z) ! 0 for every g 2 C(T ). Also any function in L1(j�j) can

be approximated in the norm of this space by continuous functions. HenceR
z�ng(z)d�(z) ! 0 for all g 2 L1(j�j) (because L1(j�j) � L1(j�j)). It fol-

lows that
R
z�nd j�j (z) ! 0 which implies

R
znd j�j (z) ! 0 as n ! 1 [ since

�z�n = zn]. Repeating the argument above we get
R
zng(z)d j�j (z) ! 0 for

every g 2 L1(j�j). Hence
R
znd�(z)! 0 as n!1.

Problem 543

Let f and g be complex valued continuous function from [0;1). If
xZ
0

f(x�

y)g(y) = 0 8y � 0 show that either f � 0 or g � 0. Give an example of
continuous integrable functions f and g on R such that f � g = 0 but neither f
nor g vanishes identically.

We �rst give the counter-example: let f(x) =
�

sin2 x
x2 if x 6= 0
1 if x = 0

and g(x) =

eiaxf(x). Then the Fourier transform of f is 1
2
p
2�
(1�

��x
2

��)+ as see easily using
the inversion formula. In particular the support of f̂ is contained in [�2; 2].
Also ĝ(t) = f̂(t � a) which has support in [a � 2; a + 2]. If a > 4 we see that
f̂ ĝ � 0 which implies f � g = 0.
Now we come to the �rst part of the problem. We shall write (f � g)(x) =

xZ
0

f(x � y)g(y). This coincides with the usual de�nition of convolution if f

and g are integrable on R and both vanish on (�1; 0). Let f1(x) = xf(x)

and g1(x) = xg(x). We have

xZ
0

(x � y)f(x � y)g(y)dy +

xZ
0

yg(y)f(x � y)dy =

x

xZ
0

f(x� y)g(y)dy = 0 or
xZ
0

f1(x� y)g(y)dy +
xZ
0

g1(y)f(x� y)dy = 0. Writing

this as f1 � g + g1 � f = 0 we get [f � g1] � [f1 � g + g1 � f ] = 0 which says
(f1 � g1) � (f � g) + h � h = 0 where h = f � g1. Using the hypothesis again we
get h � h = 0. By the next problem this implies h = 0 and hence f � g1 = 0:
Repeating this argument we get f � gn = 0 for all n where gn(x) = xng(x).

Thus

xZ
0

yng(y)f(x� y)dy = 0 for all n. By Wierstrass Theorem it follows that

yng(y)f(x� y) = 0 for 0 � y � x; x � 0. This implies either f � 0 or g � 0. [
Given t; s > 0 put x = t+ s and y = t to get g(t)f(s) = 0 8t; s > 0].
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Problem 544

If f is continuous on [0; 2�] and

xZ
0

f(x� y)f(y)dy = 0 for 0 � x � 2� show

that f vanishes identically on [0;�].
Remark: if we de�ne f to be 0 on Rn[0; 2�] it does not follow that f � f = 0

so theory of Fourier transforms does not yield this result immediately.

[ Proof from Yosida�s book]. The proof requires some preliminaries.
Lemma

lim
j!1

1X
k=1

(�1)k�1
k!

�Z
0

ekj(x�y)f(y)dy =

xZ
0

f(y)dy if f is continuous on [0;�] and

0 � x � �.

By an easy application of Fubini�s Theorem
1X
k=0

(�1)k�1
k!

�Z
0

ekj(x�y)f(y)dy =

�Z
0

1X
k=0

(�1)k�1
k! ekj(x�y)f(y)dy

= �
�Z
0

e�e
j(x�y)

f(y)dy ! �
�Z
x

f(y)dy as j !1. Hence lim
j!1

1X
k=1

(�1)k�1
k!

�Z
0

ekj(x�y)f(y)dy =

�
�Z
x

f(y)dy +

�Z
0

f(y)dy =

xZ
0

f(y)dy

Lemma

If f is continuous on [0;�] and sup
n

������
�Z
0

enyf(y)dy

������ <1 then f � 0.

In previous lemma we can replace f(y) by f(��y). We get lim
j!1

1X
k=1

(�1)k�1
k!

�Z
0

ekj(x�y)f(��

y)dy =

xZ
0

f(��y)dy or lim
j!1

1X
k=1

(�1)k�1
k! ejk(x��)

�Z
0

ekj(��y)f(��y)dy =
tZ
0

f(��

y)dy. But

������
1X
k=1

(�1)k�1
k! ejk(x��)

�Z
0

ekj(��y)f(�� y)dy

������ �M

�����
1X
k=1

1
k!e

jk(x��)

�����
= M(ee

j(x��) � 1) ! 0 as j ! 1 if 0 � x < �. Hence

xZ
0

f(� � y)dy = 0
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if 0 < x < �. In other words,

�Z
��x

f(z)dz = 0if 0 < x < � which forces f to

vanish identically.

Now

2�Z
0

ej(2��x)
xZ
0

f(x�y)f(y)dydx = 0. Put u = ��y and v = 2��u�x =

� + y � x. Note that 0 � y � x � 2� is equivalent to u + v � 0; u � � and
v � �. Also, y = ��u and x = 2��u�v. Since the Jacobian of (x; y)! (u; v)

is 1 we get
Z Z
u+v�0
u�;v��

ej(u+v)f(��v)f(��u)dudv = 0. Let R = f(u; v) : u+v �

0; u � �; v � �g and R1 = f(u; v) : u + v � 0; u � ��; v � ��g. Then

R[R1 = f(u; v) : �� � u; v � �g. Also
Z Z
R[R1

ej(u+v)f(��v)f(��u)dudv =

(

�Z
��

ejuf(�� u)du)2. Hence (

�Z
��

ejuf(�� u)du)2 =

ZZ
R

ej(u+v)f(�� v)f(��

u)dudv +

ZZ
R1

ej(u+v)f(�� v)f(�� u)dudv

=

ZZ
R1

ej(u+v)f(��v)f(��u)dudv �
ZZ
R1

f(��v)f(��u)dudv = (
�Z

��

f(��

y)dy)2 � C�2 where C=2 is an upper bound for jf j on [0; 2�]. We now have������
�Z

��

ejuf(�� u)du

������ � p
C�. Since

������
0Z

��

ejuf(�� u)du

������ �
������
0Z

��

f(�� u)du

������ =������
2�Z
0

f(t)dt

������ � C� we have

������
�Z
0

ejuf(�� u)du

������ � (C +
p
C)�. By the second

lemma above we conclude that f(�� u) = 0 8u 2 [0;�].

Problem 545

If f : T ! T satis�es the equation f(z2) = f2(z) 8z 2 T show that there is
an integer n such that f(z) = zn 8z 2 T .
Remark: this is stronger then the statement that the only continuous char-

acters of T are the functions z ! zn.

There is a continuos function g : R ! R such that f(ei2�t) = e2�ig(t) and
g(0) = 0. [ Theorem 7.6.2, p. 241 of "A Course in Probability Theory" by
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Chung]. Claim: there is an integer n such that g(x) = nx 8x. For this we
observe two facts:
1) g(t+ 1)� g(t) is an integer n independent of t
2) g(2t)� 2g(t) is an integer m independent of t

These facts are easy: e2�i[g(t+1)�g(t)] = f(e2�i(t+1))
f(e2�it) = 1 and e2�i[g(2t)�2g(t)] =

f(ei4�t)
[f(ei2�t)]2 = 1 by hypothesis. The fact that the integer values in 1) and 2)
do not depend on t follows by continuity. Let h(t) = g(t) � nt + m. Then
h(t + 1) = h(t) and h(2t) = 2h(t). This gives h( t

2k
) = 1

2k
h(t) so h(s + 1

2k
) =

1
2k
h(2ks+1) = 1

2k
h(2ks) = h(s). Iteration gives h(s+ j

2k
) = h(s) and continuity

implies h(s + x) = h(s) 8s; x 2 R. It follows that h is a constant which has to
be 0. Thus g(t) = nt+m and f(e2�it) = e2�ig(t) = e2�int or f(z) = zn.

Problem 546

If � is a positive Borel measure on R such that �t << � for every real
number t, where �t(E) = �(E + t), show that � is absolutely continuous w.r.t.
Lebesgue measure.

We have
R
�(E�x)dx =

R R
If(x;y):x+y2Egd(��m)(x; y) =

R
m(E)d�(y) = 0

if m(E) = 0. Hence there exists x such that �(E � x) = 0. By hypothesis this
implies �(E) = 0.

Problem 547

Prove that the positive �nite measures �n =
1
n

nX
k=1;k even

(�1)k�k=n converge

to 1
2� weakly (i.e. in the weak

� topology of C�[0; 1]) and that the positive �nite

measures �n = 1
n

nX
k=1;k odd

(�1)k+1�k=n also converge to 1
2� weakly where � is

Lebesgue measure on (0; 1). Conclude that 1
n

nX
k=1

(�1)kf( kn )! 0 as n!1 for

every f 2 C[0; 1].

Note that �n([0; 1]! 1
2 and �n([0; 1]!

1
2 . Hence, using standard arguments

in Probability Theory it su¢ ces to show that 1
n

nX
k=1;k even

(�1)keitk=n ! 1
2
eit�1
it

and 1
n

nX
k=1;k odd

(�1)keitk=n ! 1
2
eit�1
it 8t. These facts can be proved by direct

computation of the geometric sums involved.
Remark: the second part can be proved more easily as follows. Any f 2

C[0; 1] extends to a continuous . function F on [0; 2�] with F (0) = F (2�). It
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follows from Fejer�s theorem that f can be approximated uniformly by trigono-

metric polynomials. Since

����� 1n
nX
k=1

(�1)kf( kn )�
1
n

nX
k=1

(�1)kg( kn )
����� � kf � gk1 it

su¢ ces to prove the result when f(x) = eimx for some integer m. In this case

the convergence of 1n

nX
k=1

(�1)kf( kn ) to 0 is seen easily by explicit computation

of 1n

nX
k=1

(�1)kf( kn ).

Remark: by the method of above remark we can also show that 1
2n

nX
k=1

(�1)k
�
n
k

�
f( kn )!

0 as n!1 for every f 2 C[0; 1].

Problem 548

Let f; f 0; fn; f 0n(n = 1; 2; :::) and g be continuous on [0; 1]. If fn ! f point-
wise and f 0n ! g pointwise show that f 0 = g on [0; 1].

Suppose f 0(�) 6= g(�). Let � > 0 and [a; b] be an interval containing � such
that a < b and jf 0 � gj > � on [a; b]. We claim that ff 0ng is uniformly bounded in

some interval [c; d] � [a; b] with c < d. To see this we write [a; b] as
1[
k=1

1\
m=k

fx 2

[a; b] : jf 0m(x)� g(x)j � 1g. By Baire Category Theorem there exists an interval

[c; d] � [a; b] with c < d and [c; d] �
1\
m=k

fx 2 [a; b] : jf 0m(x)� g(x)j � 1g. It

follows that jf 0m(x)j � 1 + kgk1 8x 2 [c; d] 8m � k. This proves our claim.

Let [c1; d1] � [c; d]. Let By DCT we now get
d1Z
c1

f 0n(y)dy !
d1Z
c1

g(y)dy or f(d1)�

f(c1) = lim[fn(d1) � fn(c1)] = lim

d1Z
c1

f 0n(y)dy =

d1Z
c1

g(y)dy. This implies f 0 = g

on [c; d], a contradiction.

Problem 549 [de Bois -Reymond Lemma]

Let f; g 2 C[0; 1] and

1Z
0

[fh0 + gh] = 0 for any continuously di¤erentiable

function h such that h(0) = h(1) = 0. Show that f 0(x) exists and equals g(x)
8x 2 [0; 1].

Proof: if the functions involved are complex valued we can reduce the proof
to the real case. So assume that f and g are real valued
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Step 1: Let f 2 C[0; 1] and

1Z
0

fh = 0 for any continuous h such that

h(0) = h(1) = 0. Then f � 0.
If f > 0 on (�; �) � [0; 1] with � < � take h(x) = (x � �)(� � x) for

� < x < � and 0 elsewhere to get a contradiction.

Step 2: Let f 2 C[0; 1] and

1Z
0

fh0 = 0 for any continuously di¤erentiable

function h such that h(0) = h(1) = 0. Then f is necessarily a constant.

Let c =

1Z
0

f and h(x) =

xZ
0

ff(t) � cgdt. Then h satis�es the conditions

in the hypothesis, so

1Z
0

fh0 = 0. This also implies

1Z
0

(f � c)h0 = 0 and hence

1Z
0

(f � c)2 = 0. Hence f(x) = c 8x.

Step 3

Let f; g 2 C[0; 1] and

1Z
0

[fh0 + gh] = 0 for any continuously di¤erentiable

function h such that h(0) = h(1) = 0.

Let �(x) = f(x) � f(0) �
xZ
0

g. Then � is continuous and

1Z
0

�h0 =

1Z
0

fh0 �

1Z
0

xZ
0

g(t)dth0(x)dx. Now

1Z
0

xZ
0

g(t)0h0(x)dx =

xZ
0

g(t)dth(x)j10 �
1Z
0

g(x)h(x)dx.

Hence

1Z
0

�h0 =

1Z
0

fh0 +

1Z
0

gh = 0 for any continuously di¤erentiable function

h such that h(0) = h(1) = 0; by hypothesis. By Step 2 � is a constant,say C.

Hence f(x)� f(0)�
xZ
0

g = C which implies that f is di¤erentiable and f 0 = g.

Problem 550

Let x be a real number such that nx is an integer for each n 2 N. Prove
that x 2 f0; 1; 2; :::g.
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If 0 < x < 1 then (n + 1)x � nx = x�x�1 for some � 2 (n; n + 1). But
0 < x�x�1 � xnx�1 < 1 if n is su¢ ciently large. This is a contradiction to the
fact that (n+1)x � nx is an integer. Thus, x = 0 or x � 1. Suppose 1 < x < 2.
Then (n + 2)x � 2(n + 1)x + nx = x(x � 1)x�x�2 for some � 2 (n; n + 2) and
we can argue as above to get a contradiction. Clearly, the following version of
MVT is all that is required to complete the proof: let f : (0;1) ! R be a
C1 function de�ne Tf(x) = f(x+ 1)� f(x). Then Tnf(x) = f (n)(�) for some
� 2 (x; x + n). The proof of this is by repeated application of the standard
MVT:

Problem 551

Give an example of functions f; g : R! R such that both of these functions
have intermediate value property (IVP) but their sum f + g does not.

We use the facts that any derivative has IVP and the square of a function
with IVP has IVP. [ See solution to Problem 416 above for the �rst fact. The
second fact is obvious]. Let f(x) = [ ddxfx

2 sin 1
xg]

2 and f(x) = [ ddxfx
2 cos 1xg]

2.
Then f and g have IVP and f(x)+g(x) = [2x sin 1

x�cos
1
x ]
2+[2x cos 1x+sin

1
x ]
2 =

4x2 + 1 [with f(0) + g(0) = 0 + 0 = 0]. Obviously, f + g does not have IVP.

Problem 552

Give an elementary argument to show that the only locally integrable addi-
tive functions from R into itself are multiples of the identity map.

Remark: the only measurable additive functions from R into itself are mul-
tiples of the identity map. [see Problem 79 above]. We are asking for a simple
proof which does not use the fact that E � E contains an interval around 0 if
E has positive measure.

Integrate the equation f(x+y) = f(x)+f(y); where x; y > 0 w.r.t. x from 0

to t to get

t+yZ
y

f(x)dx =

tZ
0

f(x)dx+ tf(y). We claim that

t+yZ
y

f(x)dx�
tZ
0

f(x)dx

is symmetric in t and t; i.e.

t+yZ
y

f(x)dx �
tZ
0

f(x)dx =

t+yZ
t

f(x)dx �
yZ
0

f(x)dx.

This is easily veri�ed by considering the cases y < t and t � y separately. It
follows that tf(y) = yf(t) 8t; y > 0. Hence tf(1) = f(t) 8t > 0 which completes
the proof since f(�x) = �f(x).

Problem 553

If f : R! R is additive and not continuous show that its graph is dense in
R2.
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Pick a such that f(a) 6= af(1). Let T : R2 ! R2 be the linear map whose

matrix is
�

1 a
f(1) f(a)

�
. [ In other words, T (x; y) = (x+ay; f(1)x+ f(a)y)].

Then T is non-singular and hence a homeomorphism. Hence fT (x; y) : x; y 2 Qg
is dense. If x; y 2 Q then T (x; y) = (x+ay; f(1)x+f(a)y) and f(1)x+f(a)y =
f(x+ay) because x and y are rational. Thus, the graph of f contains the dense
setfT (x; y) : x; y 2 Qg.

Problem 554

Let f and g be continuous functions on [0; 1] such that
R
(fh0 + gh) = 0 for

every continuously di¤erentiable function h such that h(0) = h(1) = 0. Show
that f is di¤erentiable and f 0 = g:

Remark: this is a basic lemma in Calculus of Variations.

Suppose f(x)� f(0)�
xZ
0

g(t)dt > 0 on some interval (�; �) with � < �. We

construct a continuously di¤erentiable function h such that h(0) = h(1) = 0,

h0 > 0 on (�; �) and h = 0 on [0; 1]n(�; �). Once this is done we get
�Z
�

[f(x)�

f(0) �
xZ
0

g(t)dt]h0 > 0 which gives ( by an integration by parts). �
R
gh �

�Z
�

xZ
0

f(t)dth0 = �
R
gh+

�Z
�

gh > 0 a contradiction. We can then conclude that

f(x)� f(0)�
xZ
0

g(t)dt � 0 and , since f and g can be replaced by �f and �g,

we get f(x)� f(0)�
xZ
0

g(t)dt = 0 8x; completing the proof. A function h with

desired properties is given by

h(x) =

8>><>>:
0 if x < � or x > �

xZ
�

(y � �)(� � y)dy � (x� �)2�(x) if � � x � �
where � is a

continuously di¤erentiable function with the following properties: �(�) =

xZ
�

(y��)(��y)dy

(���)2

and �0(�) = �2

xZ
�

(y��)(��y)dy

(���)3 .
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Problem 555

If f 2 L2(R) show that the linear space spanned by translates of f is dense
in L2(R) if and only if mft : f̂(t) = 0g = 0.

Remark: the corresponding result for L1(R) is also true, but Segal has shown
that for Lp(R) with 1 < p < 2 the corresponding result is not true.

Suppose translates of f span a dense set in L2(R) and mft : f̂(t) = 0g > 0.
There exists a compact set K � ft : f̂(t) = 0g such that m(K) > 0. Con-

sider < Î�K ;
NX
j=1

ajfxj >=< IK ; (
NX
j=1

aje
�itxj )f̂ >= 0 whenever N � 1; aj 2

R; xj 2 R for 1 � j � N . It follows by hypothesis that Î�K = 0. Hence
I�k = 0 contradicting the fact that m(K) > 0. This proves the �only if�
part. For the converse suppose g is orthogonal to all the translates of f . ThenR
[ĝ(x)]�f̂(x)e�ixtdx =

R
[ĝ(x)]�f̂t(x)dx =< f̂t; ĝ >=< ft; g >= 0. It fol-

lows that the Fourier transform of the integrable function [ĝ(x)]�f̂(x) vanishes.
Hence [ĝ(x)]�f̂(x) = 0 a.e. If mft : f̂(t) = 0g = 0 then we get ĝ = 0, hence
g = 0 as required.

Problem 556

Let T : Lp(�)! Lp(�) be a linear map which maps non0negative functions
to non-negative functions. Show that T is a bounded operator.

Suppose supfkTfk : f � 0; kfk � 1g = 1. Then there exists a sequence
of non-negative functions ffng such that kfnk � 1 8n and kTfnk > n2. Let

f =
1X
n=1

fn
n2 . The series converges in the norm of Lp(�) and de�nes a non-

negative function f in Lp(�). Since f �
NX
n=1

fn
n2 for any positive integer N

the hypothesis shows Tf �
NX
n=1

Tfn
n2 . Hence

R
(Tf)pd� �

R
(
NX
n=1

Tfn
n2 )

pd� �

R NX
n=1

(Tfnn2 )
pd� =

NX
n=1

kTfnkp
n2p >

NX
n=1

n2p

n2p = N . Since N is arbitrary we have

arrived at a contradiction. Hence supfkTfk : f � 0; kfk � 1g < 1. Since any
f 2 Lp(�) can be written as f+ � f� and kf+k � kfk ; kf�k � kfk we get
supfkTfk : kfk � 1g <1 as required.

Problem 557

Prove that the following converse of Birkho¤�s Ergodic Theorem is false:
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If (
;F ; P ) is a probability space, T : 
! 
 is measurable and lim
n!1

1
n+1

nX
k=0

f(T k(x))

exists almost everywhere for every f 2 L1(P ) then T is measure preserving (i.e.
P � T�1 = P ).

Let (
;F ; P ) be the interval [0; 1) with Borel sigma �eld and Lebesgue
measure. Let T : [0; 14 ) ! [ 14 ; 1) and T : [ 14 ; 1) ! [0; 14 ) be measurable
maps such that T 2 = I. For example, let T (x) = 1

4 + 3x on [0; 14 ) and

T (x) = x
3 �

1
12 on [

1
4 ; 1). Then lim

n!1
1

n+1

nX
k=0

f(T k(x)) = f(x)+f(T (x))
2 8x and

P (T�1[ 14 ; 1)) =
1
4 6=

3
4 = P ([ 14 ; 1)). Note that lim

n!1
1

n+1

nX
k=0

f � T k exists in

L1(P ) also.

Problem 558

Let L1(�) denote the space of real valued integrable functions w.r.t. a �nite
positive measure �.
a) Suppose fn ! f weakly in L1(�); gn ! g weakly in L1(�) and jfnj � gn

a.e.. Show that jf j � g a.e..
b) Prove or disprove: fn ! f weakly in L1(�); gn ! g weakly in L1(�) and

jfnj � jgnj a.e.. Show that jf j � jgj a.e..

For any measurable setA we have
Z
A

jf j d� =
Z
A

f�d� where �(x) =

8<: 1 if f(x) > 0
0 if f(x) = 0
�1 if f(x) < 0

.

Since IA� 2 L1(�) we get
Z
A

jf j d� = lim
n!1

Z
A

fn�d�. Hence
Z
A

jf j d� � lim sup
n!1

Z
A

gnd� =Z
A

gd�. Hence jf j � g a.e..

The statement in b) is false. For this we take a sequence fgng � L1(�)
such that jgnj = 1 a.e. and gn ! 0 weakly. [ On such sequence is provided
by gn = 2IfXn=0g � 1 where Xn(!) is the n � th coe¢ cient in the expansion
of ! 2 (0; 1) w.r.t. base 2; the basic measure space is (0; 1) with Borel sigma
algebra and Lebesgue measure P ; note that if A 2 �fX1; X2; ; ; ; Xkg for some

k then
Z
A

gnd� = 2PfA \ fXn = 0g) � P (A) = 2P (A)PfXn = 0g � P (A) = 0

whenever n > k (by independence); Now given any Borel set A and " > 0 then
there exists k 2 N and B 2 �fX1; X2; ; ; ; Xkg such that P (A�B) < ". Since
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������
Z
A

gnd��
Z
B

gnd�

������ < " it follows that
Z
A

gnd� ! 0]. If fn � 1 then fn ! 1

weakly, gn ! g � 0 weakly, jfnj � jgnj a.e. for each n but jf j > g everywhere.

Problem 559 [ Riemann Lebesgue Lemma]

Let � be a probability measure on (
;F) and let ffngn2Z be an orthonormal
set in L2(�) such that sup

n
kfnk1 <1. Show that

R
ffnd�! 0 as n!1 for

every f 2 L1(�).
Remark: taking � to be the normalized Lebesgue measure on [0; 2�] and

fn(x) = einx; n 2 Z we get the usual Riemann Lebesgue Lemma.

Proof: if f 2 L2(�) then
X��< �f; fn >

��2 < 1 so
R
ffnd� ! 0. Given f 2

L1(�) and " > 0 choose a bounded measurable function g such that kf � gk1 <
". Then

R
gfnd�! 0 and

��R ffnd�� R gfnd��� � sup
n
kfnk1 " 8n.

Problem 560

Let � be a �nite measure, ffng � L1(�); fn ! f a.e. and assume that

given " > 0 there exists � > 0 and a positive integer n0 such that

������
Z
E

fnd�

������ < "

whenever �(E) < � and n � n0. Show that f is integrable.

Choose � such that �fx : jf(x)j > �g < �. Then �fx : jfn(x)j > 2�g < �
for n su¢ ciently large because �fx : jfn(x)� f(x)j > �g ! 0 as n!1. Hence�������

Z
fx:jfn(x)j>2�g

fnd�

������� < " for n su¢ ciently large. This shows that the sequence

ffng is uniformly integrable and this implies f 2 L1(�) and fn ! f in L1(�).

Problem 561

Prove or disprove: lim
t!1

1Z
�1

jft(x)� f(x)j dx exists for every f 2 L1(R) where

ft(x) = f(x� t).

If f is continuous with compact support then ft and f have disjoint sup-

ports for jtj su¢ ciently large. Hence

1Z
�1

jft(x)� f(x)j dx =
1Z

�1

jft(x)j dx +
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1Z
�1

jf(x)j dx = 2

1Z
�1

jf(x)j dx. Since continuous functions with compact sup-

port form a dense subset of L1(R) it follows that lim
t!1

1Z
�1

jft(x)� f(x)j dx and

lim
t!�1

1Z
�1

jft(x)� f(x)j dx both exist and the both the limits are 2
1Z

�1

jf(x)j dx:

Problem 562
Show that �2 jsin(2�nx)j ! 1 in the weak� topology of L1[0; 1] � (L1[0; 1])�.

Proof: if a < b then

bZ
a

jsin(2�nx)j dx = 1
2�n

2�nbZ
2�na

jsin yj dy = 1
2�n

X 2�(j+1)Z
2�j

jsin yj dy+

o(1) where the sum extends over all j such that 2�na < 2�j and 2�(j+1) < 2�nb

i.e., na < j and j < nb � 1. Since

2�(j+1)Z
2�j

jsin yj dy =

2�Z
0

jsin yj dy = 4

we see that

bZ
a

jsin(2�nx)j dx ! 2
� limn

nb�1�na
n = 2

� (b � a). This implies thatR
jsin(2�nx)j f(x)dx! 2

�

R
f(x)dx 8f 2 L1[0; 1].

Problem 563 [From Zaanen�s "Integration"]

Suppose jf j � g 2 L1[0; 1]. Show that there exists a sequence ffng in L1[0; 1]

such that
Z
E

fn !
Z
E

f and
Z
E

jfnj !
Z
E

g

for every Borel set E in [0; 1]. ( All functions are real valued).

Let h1 =
f+g
2 and h2 =

g�f
2 . Let fn(x) = h1(x)fjsin(2�nx)j+ sin(2�nx)g�

h2(x)fjsin(2�nx)j � sin(2�nx)g. Observe that �n(x) � h1(x)fjsin(2�nx)j +
sin(2�nx)g and  n(x) � h2(x)fjsin(2�nx)j � sin(2�nx)g have disjoint supports

and that h1; h2; �1; �2 are all non-negative. By previous problem
Z
E

hj(x) jsin(2�nx)j dx!

2
�

Z
E

hj(x)dx; j = 1; 2. Also
Z
E

hj(x)fsin(2�nx)gdx ! 0; j = 1; 2 by Riemann

Lebesgue Lemma. Hence
Z
E

fn =

Z
E

[�n �  n] ! 2
�

Z
E

h1(x)dx � 2
�

Z
E

h2(x)dx =
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2
�

Z
E

f . Also,
Z
E

jfnj =
Z
E

[�n +  n]! 2
�

Z
E

h1(x)dx+
2
�

Z
E

h2(x)dx =
2
�

Z
E

g where

the �rst equality follows from the fact that �n and  n are non-negative and
have disjoint support. Replacing fn by �

2 fn we get the desired result.

Problem 564

Let (X; d) be a compact metric space. A homeomorphism T : X ! X is
called an expansion if x 6= y implies d(Tnx; Tny) > � for some positive integer
n. Show that this concept does not change if d is replaced by an equivalent
metric.

We prove the equivalence of the following properties of T :
a) T is an expansion
b) there exists a �nite open cover fU1; U2; :::; Ukg of X such that x; y 2

1\
n=�1

T�nAn and An 2 fU1; U2; :::; Ukg for each integer n implies x = y.

c) there exists a �nite open cover fU1; U2; :::; Ukg of X such that x; y 2
1\

n=�1
T�n �An and An 2 fU1; U2; :::; Ukg for each integer n implies x = y.

Suppose a) holds and let � > 0 be as in the de�nition of an expansion. Let
fU1; U2; :::; Ukg be a �

2 open cover for X. Suppose An 2 fU1; U2; :::; Ukg for

each integer n. If x; y 2
1\

n=�1
T�n �An then, for each n, Tnx; Tny 2 �An = �Uj

for some j(= j(n)); sine the diameter of �Uj � � we get d(Tnx; Tny) � � for
every n. This implies x = y and show that a) implies c). Obviously, c) implies
b). Now let b) hold. The open cover fU1; U2; :::; Ukg of the compact metric
space X has a Lebesgue number �. [ This means any set whose diameter is less
than � is contained in one of the sets U1; U2; :::; Uk]. Now suppose x; y 2 X and
d(Tnx; Tny) � �

2 for every n. Then, for any n, the points T
nx and Tny belong

to some Uin . Let An = Uin . Then x; y 2
1\

n=�1
T�nAn and hence x = y by b).

In other words x 6= y implies d(Tnx; Tny) > �
2 for some n.

Problem 565 [ Continuation of Problem 564]

Show that if T is an expansion so is T 2.

Remark: the proof works for any T k.

By b) of previous problem there exists a �nite open cover fU1; U2; :::; Ukg

of X such that x; y 2
1\

n=�1
T�nAn and An 2 fU1; U2; :::; Ukg for each integer
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n implies x = y. Consider the open cover fUi \ T�1Uj : 1 � i; j � kg. If

x; y 2
1\

n=�1
T�2nAn and An 2 fUi \ T�1Uj : 1 � i; j � kg for each integer

n then, for each n, T 2nx and T 2ny 2 An for some An 2 fUi \ T�1Uj : 1 �
i; j � kg. Hence either T 2nx and T 2ny 2 An for some An 2 fU1; U2; :::; Ukg
and T 2n+1x; T 2n+1y 2 T (An) and T (An) 2 fU1; U2; :::; Ukg. It follows that for
every positive integer m the points Tmx and Tmy
belong to a set from fU1; U2; :::; Ukg. Hence x = y.

Problem 566

If T is an operator on a Hilbert space H such that sup
n
kTnk <1 show that

lim
n!1

1
n

n�1X
j=0

Tnx exists for every x 2 H.

First assume that T = T �. Let M = fxH : Tx = xg and N = (I � T )H.

If x 2 M then lim
n!1

1
n

n�1X
j=0

Tnx = x. Suppose x 2 N . Then x = y � Ty for

some y and lim
n!1

1
n

n�1X
j=0

Tnx = lim
n!1

1
n [y � Tny] = 0 since sup

n
kTnk < 1. It

follows from this and the hypothesis that lim
n!1

1
n

n�1X
j=0

Tnx = 0 for all x 2 �N . We

claim that H = M + �N . If u is orthogonal to N then < u; x � Tx >= 0 8x
which says u � T �u = 0. Since T = T � we get Tu = u and u 2 M . Hence
H = �N + N? � �N +M . This proves the result when T is self adjoint. Since
any bounded operator T can be written as T1 + iT2 with T1 and T2 self adjoint
the proof in the general case is complete.

Problem 567 (Lie Product Formula)

Let X be a Banach space and T; S : X ! X be bounded linear maps. Show
that

e(T+S) = lim
n!1

feTn eSn gn in operator norm. [Here eT is de�ned by eT =
1X
n=0

Tn

n! ].

Remark: if T and S are also self adjoin then it can be shown that
ei(T+S) = lim

n!1
fe iTn e iSn gn. [ Ref. Reed and Simon, Functional Analysis, p.

295]
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Let Un = e
T
n e

S
n and Vn = e

T+S
n . Then kUnn � V nn k =


n�1X
k=0

Ukn(Un � Vn)V n�k�1n

 �
n�1X
k=0

kUnkk kVnkn�k�1 kUn � Vnk

�
n�1X
k=0

�k+n�k+1n kUn � Vnk where �n is the maximum of kUnk and kVnk.

Thus, kUnn � V nn k � n�n�1n kUn � Vnk
� n kUn � Vnk ekTk+kSk since �n�1n = maxfkUnkn�1 ; kVnkn�1g; kUnkn�1 =eTn eSn n�1 � e

(n�1)kTk
n e

(n�1)kSk
n � ekTk+kSk and kVnkn�1 =

eT+Sn n�1 �
ekT+Sk � ekTk+kSk. Now

eTn eSn � eT+Sn  � C
n2 for some constant C. [ This

follows by expanding the exponentials in their power series and noting that
e
T
n e

S
n = 1+ T+S

n +O( 1n2 ); e
T+S
n = 1+ T+S

n +O( 1n2 )]. This gives kU
n
n � V nn k �

C
n e

kTk+kSk ! 0. Since V nn = e(T+S) we are done.

Problem 568

If M is a closed subspace of a Banach space X and x 2 X is the in�mum in
kx+Mk = inffkx+ yk : y 2Mg always attained?

Remark: if X is a Hilbert space then the in�mum is attained when y =
�PMx where PM is the orthogonal projection with range M .

The answer is NO. Let X = C[0; 1] and M = fg 2 X :

1=2Z
0

g =

1Z
1=2

gg.

Let f(x) � x. Claim:kf +Mk = 1
4 . If g 2 M then

1=2Z
0

fx + g(x)gdx �
1Z

1=2

fx +

g(x)gdx = 1
8�

3
8 = �

1
4 . Hence

1
4 � kf + gk (

1
2+

1
2 ). Taking in�mum over g 2M

we get kf +Mk � 1
4 . Let � be the real measure which has density I[0; 12 )�I[ 12 ;1]

w.r.t. Lebesgue measure. Since the norm of � in (C[0; 1])� is 1 there exists
f�ng � C[0; 1] such that k�nk = 1 8n and

R
�nd� ! 1. Let an = � 1

4
R
�nd�

and gn(x) = an�n(x) � x. Then kf + gnk = janj ! 1
4 as n ! 1. Since

1=2Z
0

gn�
1Z

1=2

gn = anf
1=2Z
0

�n�
1Z

1=2

�ng+ 1
4 = an

R
�nd�+

1
4 = 0 we see that gn 2M

8n. Since kf +Mk � kf + gnk ! 1
4 the claim is proved. Suppose there exists

h 2M such that kf + hk = 1
4 . Then

1=2Z
0

fx+h(x)gdx�
1Z

1=2

fx+h(x)gdx = � 1
4 so
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1
4 � kf + hk =

1
4 which implies that x+ h(x) =

1
4 on [0;

1
2 ) and x+ h(x) = �

1
4

on [ 12 ; 1). This is a contradiction, so kf +Mk is not attained.

Problem 569
In a normed linear space show that kx+ yk = kxk + kyk ) kax+ byk =

a kxk+ b kyk 8a; b � 0.

Assume b � a. Then kax+ byk = ka(x+ y) + (b� a)yk � a kx+ yk � (a�
b) kyk = a(kxk+ kyk)� (a� b) kyk
= a kxk+ b kyk and kax+ byk � a kxk+ b kyk.

Problem 570

Let
1X
n=1

xn be an unconditionally convergent series in a Banach space X.

De�ne T : l1 ! X by T (fang) =
1X
n=1

anxn. Show that T is a well-de�ned

bounded linear operator.

The fact that
1X
n=1

anxn converges for each fang 2 l1 is standard. See,

for example, p 458, Lemma 16.1 of Bases In Banach Spaces by Singer. Let

TN (x
�; fang) =

NX
n=1

anx
�(xn) for x� 2 X�; N � 1. Since

1X
n=1

jx�(xn)j < 1 for

each x� 2 X� each TN is a bounded operator onX��l1 with supfjTN (x�; fang)j :

N � 1g <1. Uniform Boundedness Principle shows
�����
NX
n=1

anx
�(xn)

����� � Cmaxfkx�k ; kfangkg

(with C independent of N). Hence


NX
n=1

anxn

 � C kfangk 8N . This gives

kTfangk � C kfangk.

Problem 571

Let X and Y be Banach spaces and T : X ! Y be a bounded operator such
that kTxk � c kxk 8x 2 X for some constant c > 0. Suppose Tn : X ! Y; n � 1
be a bounded operators such that kTn � Tk ! 0. If each Tn maps X onto Y
show that T also maps X onto Y .

Let y 2 Y and choose xn 2 X such that Tnxn = y. Note that kTnxk �
kTxk � k(Tn � T )xk
� c kxk� c

2 kxk =
c
2 kxk 8x. Now kxn � xmk �

1
c kTxn � Txmk �

1
c kTxn � Tnxnk+

1
c kTmxm � Txmk because Tmxm = Tnxn(= y). Hence kxn � xmk � 1

c kTn � Tk kxnk+
1
c kTm � Tk kxmk. Since kTnxk �

c
2 kxk 8x we get kyk = kTnxnk � c

2 kxnk
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and kyk � c
2 kxmk. It follows that fxng is Cauchy. Let xn ! x. Now

ky � Txk = kTnxn � Txk � kTn � Tk kxnk+ kTxn � Txk ! 0 so y 2 T (X).

Problem 572

Let f 2 L1(R) and suppose f vanishes outside [��;�]. Let g(x) =
xZ

�1

f(t)dt.

Show that g(x+h)�g(x)h ! f in L1(R) as h! 0.

We consider positive values of h. A similar argument can be used when h! 0

through negative values. If f is also continuous then

1Z
�1

��� g(x+h)�g(x)h � f(x)
��� dx =

1Z
�1

������ 1h
x+hZ
x

f(t)dt� f(x)

������ dx =
1Z

�1

������ 1h
x+hZ
x

[f(t)� f(x)]dt

������ dx
� 1

h

1Z
�1

tZ
t�h

jf(t)� f(x)j dxdt = 1
h

�+1Z
���1

tZ
t�h

jf(t)� f(x)j dxdt if 0 < h < 1.

Since f is uniformly continuous and 1
h

�+1Z
���1

tZ
t�h

1dxdt = �+2 <1 it follows that

1Z
�1

��� g(x+h)�g(x)h � f(x)
��� dx ! 0. For the general case choose  2 Cc(R) such

that

1Z
�1

jf(x)�  (x)j dx < ". Let �(x) =

xZ
�1

 (t)dt. Then

1Z
�1

��� g(x+h)�g(x)h � �(x+h)��(x)
h

��� dx
�

1Z
�1

������ 1h
x+hZ
x

ff(t)�  (t)gdt

������ dx = 1
h

1Z
�1

jf(t)�  (t)j
tZ

t�h

dxdt < " so

1Z
�1

��� g(x+h)�g(x)h � f(x)
��� dx <

2"+

1Z
�1

����(x+h)��(x)h �  (x)
��� dx < 3" if h > 0 is su¢ ciently small.

Problem 573

If 1 < p < 1; fn ! f a.e. and fkfnkpg is bounded show that fn ! f
weakly in Lp.
Remarks: the conclusion fails in L1: fn = nI(0; 1n ); f = 0. However, if the

boundedness of fkfnk1g is replaced by the condition kfnk1 ! kfk1 then ffng
not only converges weakly, it converges in L1:
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There exists a �nite constant C such that kfkp and kfkp do not exceed

C for any n. Fix g 2 Lq. By DCT
Z

fjgj��g

jgjq ! 0 as � ! 0. Let " > 0

and let A = fjgj > �g where � is chosen such that
Z

fjgj��g

jgjq < "
C . Note

that �(A) < 1. There exists B � A such that fn ! f uniformly on B and

�(AnB) < � where 0 < � < �is such that
Z
E

jgjq < " whenever �(E) < �. .

Let n0 be such that n � n0 and x 2 B implies jfn(x)� f(x)j < "
kgkqf�(B)g1=p

.

We now have
��R fng � R fg�� � Z

AnB

jfn � f j jgj+
Z
Ac

jfn � f j jgj+
Z
B

jfn � f j jgj.

Note that
Z
B

jfn � f j jgj � "
kgkqf�(B)g1=p

Z
B

jgj � " by Holder�s inequality. Next

we note that
Z

AnB

jfn � f j jgj � 2C(
Z

AnB

jgjq)1=q < 2C". Finally,
Z
Ac

jfn � f j jgj �

2C(

Z
Ac

jgjq)1=q < 2C( "C )
1=q. It follows that

��R fng � R fg�� � "+2C"+2C1=p"1=q.

[ To prove the result in the remark above �rst note that lim sup
Z
E

jfnj =

lim supf
R
jfnj �

Z
Ec

jfnjg =
R
jf j � lim inf

Z
Ec

jfnj �
R
jf j �

Z
Ec

jf j (by Fatou�s

Lemma)

=

Z
E

jf j � lim inf
Z
E

jfnj which implies that
Z
E

jfnj !
Z
E

jf j for every mea-

surable set E. Now proceed as in above proof and use the inequality
R
jfn � f j �Z

Ac

jf j+
Z
Ac

jfnj+
Z

AnB

jf j+
Z

AnB

jfnj+
Z
B

jfn � f j].

Problem 574

Prove that Lp is uniformly convex if 1 < p <1.

This follows immediately from Clarkson inequalities. Find details below.

Lemma 1
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If 2 � p <1 then
��a+b
2

��p+ ��a�b2 ��p � jajp
2 + jbjp

2 for any two complex numbers
a and b.

(The inequality is false for p = 1 (and p = 1:5, and, perhaps, for every
p 2 [1; 2)): put a = 2; b = 1).
Assume that p � 2. We have to show that

�� 1+c
2

��p + �� 1�c2 ��p � 1
2 +

jcjp
2 for

jcj � 1. In other words we have to show that
��� 1+reit2

���p + ��� 1�reit2

���p � 1
2 +

rp

2

for 0 � r � 1 and 0 � t � 2�. Let f(t) =
��1 + reit��p + ��1� reit��p = (1 +

r2 + 2r cos t)p=2 + (1 + r2 � 2r cos t)p=2. Then f 0(t) � 0 for 0 � t � �
2 (as

seen by an explicit computation of the derivative). If we show that f(0)(�
(1 + r)p + (1� r)p)) � 2p( 12 +

rp

2 ) it would follow that f(t) � 2p( 12 +
rp

2 )

for 0 � t � �
2 . This proves the inequality

��� 1+reit2

���p + ��� 1�reit2

���p � 1
2 +

rp

2 for

0 � r � 1 and 0 � t � �
2 . Since � � t 2 [0; �2 ] for

�
2 � t � � and 2� � t 2 [0; �]

for � � t � 2� the inequality holds for all t 2 [0; 2�]. It remains to show that
(1 + r)p + (1� r)p � 2p( 12 +

rp

2 ) for 0 � r � 1 and p � 2.
For this we begin with the function  (x) = (1 + x)p�1 + (1 � x)p�1 �

2p�1de�ned on [0; 1]. Its derivative is non-negative on (0; 1) and since  (1) = 0
we get  (x) � 0 for x 2 [0; 1]. Next let �(x) = ( 1x+1)

p+( 1x�1)
p�2p�1( 1xp +1).

Then �(1) = 0 and �0(x) = � p
xp+1 (x) � 0. Hence � is increasing, so �(x) � 0

for x 2 (0; 1]. This says ( 1x + 1)
p + ( 1x � 1)

p � 2p�1( 1xp + 1) which is what we
wanted to prove.

Lemma 2

If 1 < p � 2 and q = p
p�1 then ja+ bj

q
+ ja� bjq � 2(jajp + jbjp)

1
p�1 for any

two complex numbers a and b.

As in the proof of Lemma 1 we can reduce this to the following inequality:
(1+x )q+(1�x)q � 2(1+xp)1=(p�1) for 1 < p < 2 and 0 < x < 1. [ Equality

holds for p = 2 as well as for x 2 f0; 1g]. This is equivalent to the following:
(1 + 1�t

1+t )
q + (1� 1�t

1+t )
q � 2f1+ ( 1�t1+t )

pg1=(p�1) for 0 < t < 1. We shall show
that
(1+sq)p�1 � 1

2f(1+s )
p+(1�s)pg for 0 < s < 1. It is easy to see that this last

inequality gives the previous one. Consider 12f(1+s )
p+(1�s)pg� (1+sq)p�1.

This function has a (uniformly convergent) power series expansion in s and the
coe¢ cient of sk is

p(p�1):::(p�(2k�1))
(2k)! s2k� p(p�1):::(p�(2k�1))

(2k�1)! sq(2k�1) � p(p�1):::(p�2k)
(2k)! s2kq which

is s2k (2�p)(3�p):::(2k�p)(2k�1)! s2kf p(p�1)
(2k)(2k�p)�

p�1
2k s

q(2k�1)�2k+p�1
2k s

2kq�2kg = s2k (2�p)(3�p):::(2k�p)(2k�1)! s2kf 1�s
2k�p
p�1

2k�p
p�1

�

1�s
2k
p�1

2k
p�1

g � 0 because 1�s�
� is a decreasing function of � on (0;1). This proves

that each term in the power series is non-negative and so is the sum.

Lemma 3
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If f is a non-negative function in Lp and g is a non-negative function in Lq

where 0 < p < 1; q = p
p�1 then

R
fg � (

R
fp)1=p(

R
gq)1=q provided

R
gq > 0.

Note that g(x) > 0 a.e.. Let r = 1
p and �1 = g�1=r; �2 = g1=rf1=r.

Then
R
fp =

R
�1�2 � (

R
�r2)

1=r(
R
�s1)

1=s where s = r
r�1 = 1

1�p . HenceR
fp � (

R
fg)p(

R
g�

p
1�p )1�p. This says

R
fg � (

R
fp)1=p 1

(
R
g
� p
1�p )(1�p)=p

=

(
R
fp)1=p(

R
gq)1=q .

Lemma 4

If 0 < p < 1 and f and g are non-negative functions in Lp then f + g 2 Lp
and kf + gkp � kfkp + kgkp.

Since jf + gjp � 2pfjf jp+ jgjpg we get f+g 2 Lp. Now
R
ff+ggp =

R
fff+

ggp�1 +
R
gff + ggp�1 � (

R
fp)1=p(

R
(f + g)p)

p�1
p + (

R
gp)1=p(

R
(f + g)p)

p�1
p .

Hence (
R
fp)1=p + (

R
gp)1=p � (

R
(f + g)p)1+

1�p
p = (

R
(f + g)p)1=p.

Lemma 5

Clarkson inequality:
 f+g2 q

p
+
 f�g2 q

p
� f 12 kfk

q
p +

1
2 kgk

q
pg1=(p�1) if 1 <

p < 2; q = p
p�1 and f; g 2 L

p.

We have
��� f+g2 ���q

p�1
+
��� f+g2 ���q

p�1
�
��� f+g2 ���q + ��� f�g2 ���q

p�1
by Lemma 4

(because 0 < p � 1 < 1). Hence
 f+g2 q

p
+
 f�g2 q

p
�
��� f+g2 ���q + ��� f�g2 ���q

p�1
�

f 12 kfk
q
p +

1
2 kgk

q
pg1=(p�1) by Lemma 2.

Lemma 6

Carkson inequality for 2 � p <1 : f+g2 p
p
+
 f�g2 p

p
� 1

2 kfk
p
p +

1
2 kgk

p
p 8f; g 2 Lp.

This is immediate from Lemma 1.

Problem 575

Let 1 < p < 1:,fn 2 Lp(n = 1; 2; :::); f 2 Lp; fn ! f weakly and kfnkp !
kfkp. Show that kfn � fkp ! 0.

This is a general fact: if X is a uniformly convex normed linear space,
xn ! x weakly and kxnk ! kxk then kxn � xk ! 0. [ Lp is uniformly convex
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by Problem 574]. For a proof of this general fact note that there is nothing
to prove if x = 0. Otherwise kxnk > 0 for n su¢ ciently large, say n � n;
and we can de�ne fyngn�n0 by yn = 1

kxnkxn. Let y =
1
kxkx. Then yn ! y

weakly. Claim:kyn � yk ! 0. By uniform convexity it su¢ ces to show that
kyn + yk ! 2. Suppose there is a sequence nj !1 such that

ynj + y < 2��
8j with � > 0. Choose x� 2 X� such that kx�k = 1 and x�(y) = 1. Thenx�(ynj + y) � ynj + y < 2��. But x�(ynj )! x�(y) = 1 so x�(ynj+y)! 2,
a contradiction.

Problem 576

Show that fn 2 L1(n = 1; 2; :::); f 2 L1; fn ! f weakly and kfnk1 ! kfk1
does not imply kfn � fk1 ! 0.

Let � be the normalized Lebesgue measure on [0; 2�]; fn(x) = 1 + sinnx
and f(x) = 1. Then fn ! f by Riemann Lebesgue Lemma. kfn � fk1 =

1
2�

2�Z
0

jsin(nx)j dx = 2
�8n.

Problem 577

Let f be locally integrable on R and
R
jf(x)jp dx = 1 where 1 � p < 1.

Show that
R
f(x)g(x)dx = 0 for all g in some dense subset of Lq(R) where

q = p
p�1 .
Remark: of course, the set above is not dense if f is a non-zero element of

Lq(R).

Let M be the space of all functions g in Lq(R) such that
R
fg exists and

has the value 0. If this linear space is not dense in Lq(R) then there exists
h 2 Lp(R)nf0g such that

R
gh = 0 for all g 2 M . Let x and y be common

Lebesgue points of f and h. Let g = �(
y+"Z
y�"

f)I(x�";x+") + (

x+"Z
x�"

f)I(y�";y+").

Then g 2 Lq and
R
fg = 0. Hence 0 =

R
fh = �(

y+"Z
y�"

f)(

x+"Z
x�"

h) + (

y+"Z
y�"

h)(

x+"Z
x�"

f).

Dividing by 4"2 and letting " ! 0 we get f(y)h(x) = h(y)f(x). It follows that
h = cf a.e. for some constant c. Since h 6= 0 it follows that c 6= 0 and since
h 2 Lp(R) we get f 2 Lp(R), a contradiction.

Problem 578

If
X

janjp =1 where 1 � p <1 show that the collection of all sequences
fbng in lq where q = p

p�1 such that
P
anbn converges to 0 is dense in lq.
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This is similar to previous problem. Just replace intervals in the proof above
by singletons.

Problem 579

If 1 � p <1,fn ! f in Lp and fn ! g a.e. show that f = g a.e.

We �rst observe that ffng is bounded in the norm of Lp and hence
R
jgjp �

lim inf
R
jfnjp < 1. If possible let �fx : jf(x)� g(x)j > �g > 0 for some

� > 0. Let 0 < " < �fx : jf(x)� g(x)j > �g. By Egoro¤�s Theorem applied
to the restriction of � to fx : jf(x)� g(x)j > �g ( which is a �nite measure)
there exists B � fx : jf(x)� g(x)j > �g such that fn ! g uniformly on B

and �(fx : jf(x)� g(x)j > �gnB) < ". But then
Z
E

g = lim

Z
E

fn =

Z
E

f for

every measurable set E � B. It follows that f = g a.e. on B. Hence �fx :
jf(x)� g(x)j > �g = �(fx : jf(x)� g(x)j > �gnB) < " contradicting the choice
of ".

Problem 580

If 1 < p < 1 and ffng � ff 2 Lp(m) : kfkp � 1g ( where m is Lebesgue
measure on (0; 1)) show that there is a subsequence of ffng which converges
weakly.
Remark: this is false for p = 1 : let fn = nI(0; 1n ). If fnj ! h weakly thenR

hg = g(0) for any continuous function g on [0; 1]. In particular
R
xh(x)g(x) =

0 for every continuous function g which implies xh(x) = 0 a.e.. However
R
h =

lim
R
fnj = 1.

Claim: if ffng is a bounded sequence in Lp(m) and lim
n!1

xZ
0

fn exists for every

x in a dense subset of (0; 1) then ffng converges weakly. To see this note that
the unit ball of Lp(m) is weakly compact and metrizable by Banach Aloaglu
Theorem and separability of Lq(m) where q = p

p�1 . Hence any subsequence of
ffng has a further subsequence converging weakly to some function g 2 Lq(m).

This implies that lim

xZ
0

g = lim
n!1

xZ
0

fn, so g does not depend on the subsequence

we started with. This proves the claim. Now given ffng as in the statement

there is, by a diagonal procedure, a subsequence ffnjg such that lim
n!1

xZ
0

fnj

exists for every rational number x. It follows by the claim that ffnjg converges
weakly in Lp(m).
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Problem 581

If X is a re�exive Banach space, Y is a normed linear space and T : X ! Y
is a bounded operator show that fTx : kxk � 1g is closed in Y .

This requires a theorem of Eberlein: the closed unit ball of X is weakly
sequentially compact if X is re�exive. Thus, kxnk � 1; Txn ! y implies xnj !
x weakly for some nj " 1 and some x 2 X. Hence Txnj ! Tx weakly, so
y = Tx 2 fTx : kxk � 1g because jx�(x)j = lim

��x�(xnj )�� � kx�k 8x�.
Problem 582

Let fxng be an orthonormal sequence in a Hilbert space H. Show that
1X
n=1

xn converges in the norm i¤
1X
n=1

< xn; y > converges for every y 2 H i¤

1X
n=1

kxnk2 <1.

Suppose
1X
n=1

< xn; y > converges 8y. De�ne Tn : H ! K ( K being

the scalar �eld) by Tn(y) =
nX
k=1

< xk; y >=<
nX
k=1

xk; y > : Then kTnk =
nX
k=1

xk

 =
vuut nX
k=1

kxkk2 by orthogonality. By Uniform Boundedness Principle

supfkTnk : n � 1g <1. Hence
1X
n=1

kxnk2 <1. Rest is elementary.

Problem 583

Show that the sequence f sin(2�nx)
jsin(2�nx)jg converges to 0 weakly in L

2(0; 1).

We claim that supf
bZ
a

sin x
jsin xjdx : 0 < a < b < 1g < 1. For this observe

that if 2�j � a < 2�(j + 1) and 2�k � b < 2�(k + 1) then

2�(l+1)Z
2�l

sin x
jsin xjdx = 0

for every l between l + 1 and k � 1. Hence

bZ
a

sin x
jsin xjdx is the sum of inte-

grals of sin x
jsin xj over two intervals, each of which has length at most 2�. It
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follows that supf
bZ
a

sin x
jsin xjdx : 0 < a < b < 1g � 2�. Now

bZ
a

sin(2�nx)
jsin(2�nx)jdx =

1
2�n

2�nbZ
2�na

sin(y)
jsin(y)jdx ! 0. It follows that

1Z
0

sin(2�nx)
jsin(2�nx)jf(x)dx ! 0 for every step

function f . The fact that step fuctions form a dense subset of L2(0; 1) com-
pletes the proof.

Problem 584

Let X and Y be Banach spaces, T : X ! Y and S� : Y � ! X� linear
and y�(T (x)) = S(y�)(x) 8x 2 X;8y� 2 Y �. Show that T and S are bounded
operators and S = T �.

For ky�k � 1 let Ty�(x) = y�(Tx)(= S(y�)(x)). Then Ty� is a continu-
ous linear functional on X with kTy�k � kS(y�)k. For �xed x 2 X we have
jTy�(x)j = jy�(Tx)j � kTxk. By Uniform Boundedness Principle it follows that
supfjTy�(x)j : ky�k � 1; kxk � 1g < 1 which implies supfkTxk : kxk � 1g <
1. Hence T is bounded. Similarly S is also bounded. By de�nition of adjoints
S = T �:

Problem 585

A book on Functional Analysis has an exercise which says that if A1 and
A2 are self adjoint operators, A1 � A2 and B � 0 then A1B � A2B. Give a
counterexample.

Let A1 and B be the operators on C2 given by the matrices
�
2 1
1 4

�
and

�
1 �3
�3 10

�
. Then < A1(x; y); (x; y) >= 2f(x + 1

2y)
2 + 7

4y
2g and <

B(x; y); (x; y) >= (x � 3y)2 + y2. If A2 = 0 then the hypothesis is satis�ed.

However, A1B is given by the matrix
�
�1 4
�11 37

�
which is not positive de�nite

since < (A1B)(1; 0); (1; 0) >= �1 < 0. (The conclusion would have been true if
there was an added hypothsis that B commutes with A1 �A2).

Problem 586

Give an example of a non-empty closed set in a Hilbert space which has no
element of minimal norm
Solution: f�nen : n � 1g where �n ! 1 and feng is orhonormal.

Problem 587
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Show that T 2 B(H) (H a Hilbert space); T 2 = T and kTk � 1 imply
T � = T ( so T is an orthogonal projection).

First recall that kT �k = kTk : kT �k = supf< T �x; y >: kxk � 1; kyk � 1g =
supf< x; Ty >: kxk � 1; kyk � 1g = kTk.
If Tx = x then kT �x� xk2 = kT �xk2 + kxk2 � 2Re < T �x; x >= kT �xk2 +

kxk2 � 2Re < x; Tx >

� kxk2 + kxk2 � 2 kxk2 = 0. Thus, Tx = x implies T �x = x. Since T 2 = T
this gives T �(Tx) = Tx 8x. Hence T �T = T and, taking adjoints on both sides,
we get T �T = T �. Thus, T � = T .

Problem 588

Let M be the space of all complex Borel measures on [0; 1]. Is the set
f� 2 M : k�k = 1g a closed set in teh weak� topology of M � (C[0; 1])�? [
k�k = j�j ([0; 1]) is the total variation norm of �].

No! Let d�n =
�
2 sin(2�nx)dx and � = 0. Then k�nk = 18n and �n ! � in

the weak� topology ( by Riemann Lebesgue Lemma).

Next four problems (from Bourbaki�s "Integration I") are related to each
other. [ Some of these appeared earlier in Problems 357-358 but with slightly
di¤erent proofs]

Problem 589
If a1; a2; :::; aN are distinct real numbers show that the functions jx� aij ; 1 �

i � N are lineraly independent elements of C[0; 1].

Suppose jx� aj =
kX
j=1

bj jx� aj j with bj 2 R; 1 � j � k and a; a1; a2:::; aN

distinct. We show that at least one of the coe¢ cients vanishes. The proof can
then be completed using induction on k. For x large we have

x� a =
kX
j=1

bj(x� aj). Hence
kX
j=1

bj = 1. Without loss of generality we may

suppose a1 < a2 < ::: < ak. We consider three cases:
a) a1 < a2 < :::: < ai�1 < a < ai < ::: < ak for some i
b) a < a1 < a2 < :::: < ak
c) a1 < ::: < ak < a

In case a) take x 2 (a1; a2) to get a� x =
kX
j=2

bj(aj � x) + b1(x� a1). This

implies
kX
j=2

bj = 1 + b1 so b1 = 0.
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In case b) let x 2 (a; a1). We get x � a =
kX
j=1

bj(aj � x) which gives the

contradiction
kX
j=1

bj = �1.

In case c) let x 2 (ak; a). We have a� x =
kX
j=1

bj(x� aj) which again leads

to the contradiction
kX
j=1

bj = �1.

Problem 590 [ Continuation of Problem 589]

Show that we cannot express jx� yj (0 � x � 1; 0 � y � 1) as a �nite sum
of functions of the type f(x)g(y) with f and g continuous.

Suppose jx� yj =
kX
i=1

fi(x)gi(y) for 0 � x � 1; 0 � y � 1 with each fi

and each gi continuous. Consider k+1 distinct numbers y1; y2; :::; yk+1 in [0; 1].

Then jx� yj j =
kX
i=1

fi(x)gi(yj) 8x: By elementary linear algebra the system

of equations
k+1X
j=1

�jgi(yj) = 0 for 1 � i � k has a non-trivial solution. This

gives
k+1X
j=1

�j jx� yj j =
k+1X
j=1

�j

kX
i=1

fi(x)gi(yj) =
kX
i=1

f
k+1X
j=1

�jgi(yj)gfi(x) = 0 8x

and this contradicts the linear independence of fjx� yj j : 1 � j � k+1g proved
in Problem 589.

Problem 591 [ Continuation of Problem 590]

If � is a complex Borel measure on [0; 1] such that
R
jx� yj d�(x) = 0 8y 2

[0; 1] show that � = 0.

Remark: an equivalent statement is: fjx� yj : 0 � y � 1g spans a dense
subspace of C[0; 1].
A corollary is the following: if X;X1; X2::: are random variables with values

in [0; 1] and E jXn � aj ! E jX � aj 8a then Xn ! X weakly

Let 0 < y < 1 and suppose j�j fyg = 0. For jhj su¢ ciently small we have 0 =R
jx�y�hjd�(x)�

R
jx�yjd�(x)

h =
R
�(x; y; h)d�(x) where �(x; y; h) = jx�y�hj�jx�yj

h .
Note that j�(x; y; h)j � 1 and �(x; y; h) ! I[0;y] � I(y;1] a.e. [�]. By DCT we
get �[0; y] � �(y; 1] = 0: Note that if we put y = 0 in the hypothesis we get
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R
xd�(x) = 0 and if we put y = 1 we get �[0; 1]�

R
xd�(x) = 0. It follows that

�[0; 1] = 0. Combining this with �[0; y] = �(y; 1] we get �[0; y] = �(y; 1] = 0
8y such that j�j fyg = 0. There are at most a countable number of points y
such that j�j fyg > 0 and the function �[0; y] is right continuous, so we get
�[0; y] = 0 8y 2 (0; 1). This implies that � is concentrated on f1g; sinceR
jx� yj d�1(x) = j1� yj 6= 0 (for any y < 1) we see that � must be the zero

measure.

Problem 592 [ Continuation of Problem 591]

Consider the map � ! �� where ��(y) =
R
jx� yj d�(x) from the space of

complex Borel mesaures on [0; 1] into C[0; 1]. Show that this is a one-to-one
continuous linear map with dense range whose inverse is not continuous. Also
show that the range is a proper subset of C[0; 1].

The second part follows from the �rst by Open Mapping Theorem. We have
already shown (in Problem 591) that the linear map �! �� is one-to-one. Note
that

�� 1
n � y

��! jyj uniformly for 0 � y � 1. Hence �� 1
n

! ��0 in C[0; 1]. Since� 1
n
� �0

 = 2 8n we see that the inverse of above map is not continuous. To
show that the range is dense we show that

R
��(y)d�(y) = 0 8� implies � = 0.

Taking degenerate measures for � we see that
R
jx� yj d�(y) = 0 8x which

implies � = 0 by Porblem 591.

Problem 593

Let 0 < p < 1 and X be the space Lp(�) where � is Lebesgue measure on
(0; 1). Metrize X by d(f; g) =

R
jf � gjp. If V is any neighbourhood of 0 show

that the convex hull of V equals X. Use this to show that there is no non-zero
continuous linear functional on X.

Let f 2 X. The function x!
xZ
0

jf(y)jp dy is continuous. Hence there exists

a 2 (0; 1) such that
aZ
0

jf(y)jp dy = 1
2

1Z
0

jf(y)jp dy. Let f1 = 2fI(0;a) and f2 =

2fI[a;1). Then
f1+f2
2 = f . Also

R
jf1jp = 2p

aZ
0

jf(y)jp dy = 2p�1
1Z
0

jf(y)jp dy.

Similarly,
R
jf2jp = 2p�1

1Z
0

jf(y)jp dy. We have expressed f as a convex combi-

nation of functions f1 and f2 such that d(fj ; 0) = 2p�1d(f; 0). Repeating this
we can express f as a convex combination of a �nite number of elements whose
distance from 0 is as small as we want. ( Note that p� 1 < 0). This proves the
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�rst part and the second part is immediate: ff : jx�(f)j < 1g is a convex neigh-
bourhood of 0 for any continuous linear functional x� on X and so jx�(nf)j < 1
8n 8f so x� � 0.

Problem 594

Let f : R ! R be measurable and 1 � p; q < 1. Find a necessary and
su¤cient condition that f � g 2 Lq(R) for every g 2 Lp(R).

The condition is jf(x)j � c jxjp=q 8x 2 R for some constant c 2 (0;1).
Su¢ ciency is obvious. Necessity is proved by contradiction. Suppose jf(xn)j >

n jxnjp=q 8n. Let g =
1X
n=2

xnIAn where A
0
ns are disjoint Borel sets withm(An) =

1
nqjxnjp if q > 1 andm(An) = 1

n(logn)2jxnjp if q = 1. [ If xn = 0 thenm(An) can

be arbitrary]. Then
R
jgjp =

1X
n=2

1
nq if q > 1 and

R
jgjp =

1X
n=2

1
n(logn)2 if q = 1:

Thus g 2 Lp. But f � g =2 Lq(R) because
R
jf � gjq =

1X
n=2

jf(xn)jqm(An) >

1X
n=2

nq jxnjpm(An) which is
1X
n=2

1 =1 if q > 1 and
1X
n=2

1
(logn)2 =1.

Problem 595

Prove or disprove: the sequence fsinnxg converges to 0 in measure on the
space (0; 1) with Lebesgue measure.

If fsinnxg converges to 0 in measure then DCT tells us that
1Z
0

jsinnxj dx!

0. [ Indeed, every subsequence of fsinnxg has a further subsequence converg-

ing a.e. to 0]. However

1Z
0

jsinnxj dx = 1
n

nZ
0

jsin yj dy � 1
n

2k�Z
0

jsin yj dy where

k = [ n2� ]. Hence

1Z
0

jsinnxj dx � 1
n

kX
j=1

2j�Z
2(j�1)�

jsin yj dy = 1
n

kX
j=1

2�Z
0

jsin yj dy =

4
n [

n
2� ]!

2
� as n!1.

Problem 596

Let f; g : [0; 1]! R be continuous on [0; 1] and di¤erentiable on (0; 1). Show

that det
�
f(1)� f(0) g(1)� g(0)

f 0(c) g0(c)

�
= 0 for some c 2 (0; 1).
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Apply Mean Value Theorem to the function det
�
f(1)� f(0) g(1)� g(0)
f(x)� f(0) g(x)� g(0)

�
.

Problem 597

For a function f : (0;1) ! R show that convexity of xf(x) and f( 1x ) are
equivalent.

This is easy if we use the fact that a function g : (0;1)! R is convex if and
only if there exist sequences fang; fbng such that g(x) = supfanx + bn : n =
1; 2; :::g 8x.

Problem 598

Prove that a function f : [a; b]! R is convex if and only if supff(x) + ax :
� � x � �g = maxff(�) + a�; f(�) + a�g whenever a � � < � � b.

If f is convex we can write f(x)as supfanx+bn : n = 1; 2; :::g and a¢ ne maps
satisfy the property in the statement which implies that f itself has this property.
Conversely, suppose supff(x) + ax : � � x � �g = maxff(�) + a�; f(�) + a�g
whenever a � � < � � b. Let a = � f(�)�f(�)

��� . Then f(�) + a� = f(�) + a�

and hence f(x) + ax � f(�) + a� for � � x � �. Thus f(x)�f(�)
x�� � f(�)�f(�)

���
for � < x < �. Since � and � are arbitrary (subject to a � � < � � b) this says
f(x)�f(�)

x�� � f(�)�f(�)
��� whenever � < x < � with �; �; x 2 [a; b]. In other words,

f(x) � ��x
���f(�) +

x��
���f(�) whenever � < x < �. Hence f is convex.

Problem 599
If f is convex on [0;1) show that f(x)� xf 0(x+) is decreasing.

We have f(x2) � f(x1) =

x2Z
x1

f 0(x+)dx � f 0(x2+)(x2 � x1) � x2f
0(x2+) �

x1f
0(x1+) for 0 � x1 < x2.
Problem 600

LetX and Y be jointly normal each having mean 0. Show that cos(�PfXY <
0g) = �(X;Y ) ( the correlation coe¢ cient between X and Y:

Without loss of generality we may suppose that X and Y both have variance
1. We have to show that EXY = cos(�PfXY < 0g). Let � = EXY;U = X
and V = aX+bY where a = �b� and b2f1��2g = 1. [ This is not possible when
� = �1. However, if � = �1 then, by the condition for equality in Holder�s
inequality) we get Y = cX for some real number c which must be �1 and the re-
sult is obvious in this case]. Note that j�j < 1 so we can take b = 1p

1��2 and a =
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� �p
1��2 . Now U and V are i.i.d. N(0; 1). Hence PfXY < 0g = PfU V�aU

b <

0g = PfUV < aU2g =
Z Z
fst<as2g

1
2� e

�s2=2e�t
2=2dsdt. Using polar coordinates

we get PfXY < 0g =
Z

fsin � cos �<a cos2 �g

1Z
0

1
2� e

�r2=2rdrd� = 1
2�mf� 2 [0; 2�] :

fsin � cos � < a cos2 �gg: Hence cos(�PfXY < 0g) = cosf 12mf� 2 [0; 2�] :
fsin � cos � < a cos2 �gg). Splitting [0; 2�] into the parts with cos � > 0 and
cos � < 0 we get 1

2mf� 2 [0; 2�] : fsin � cos � < a cos2 �gg = mf� 2 [0; 2�] :
ftan � < agg. What remains is to show that cos(mf� 2 [0; 2�] : ftan � <
agg) = �. Using the fact that cos(�PfXY > 0g) = cos(� � �PfXY < 0g) =
� cos(�PfXY < 0g) we see that the original result does not change of we replace
X by �X. Hence there is no loss of generality in assuming that � > 0. (in which
case a < 0). mf� 2 [��; �] : ftan � < ag = �� 2�0 where �0 = tan�1(�a). [ To
see this split [��; �] into [��;��=2]; [��=2; 0]; [0; �=2] and [�=2; �]�; there is no
contribution from second and fourth intervals; contributions from the �rst and
the third are each equal to �

2��0]. All that remains is to show that cos(
�
2��0) =

� or sin �0 = �. This is easy: sin �0 =
q
1� 1

1+tan2 �0
= � 1p

1+a2
= �.

Problem 601

Let f; f1; f2; ::: be convex functions on [0; 1] such that fn(x) ! f(x) 8x 2
[0; 1]. Show that fn ! f uniformly on [0; 1].
Remark: the argument below shows that if we f 0ns are convex, ffn(0)g is

bounded above, ffn(1)g is bounded above and ffn( 12 )g is bounded below then
ffng is equicontinous.

Fix 0 < c < 1. We have fn(c) = fn(0) +

cZ
0

gn(t)dt where gn(t) = f 0n(t+).

Since gn is increasing we have fn(c) � fn(0) + cgn(c). Hence there exists a
positive number M such that gn(c) > �M 8n. On [c; 1] we can write fn(x) =
supfanjx+bnj : j � 1g where each anj is gn(t) for some t in [c; 1]. It follows that
anj > �M 8n; j. Now supfbnj : j � 1g and supfanj+bnj : j � 1g are both �nite
because ffn(0)g and ffn(1)g are bounded. It follows that supfbnj : j � 1g <1
and supfanj : j � 1g <1. Let x; y 2 [c; 1]. Then anjx+ bnj = fanjy + bnjg+
anj(x � y) � fn(x) + M1 jx� yj where M1 = supfjanj j : n; j � 1g. Taking
supremum over j we get fn(x) � fn(y) +M1 jx� yj. It follows from this that
jfn(x)� fn(y)j �M1 jx� yj 8x; y;8n. We conclude that ffng is equicontinuous
and fn ! f uniformly on [c; 1]. Applying this result to fn(1� x) and f(1� x)
we see that fn ! f uniformly on [0; 1� c]. Take c = 1

2 to complete the proof.

Problem 602
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Let f be convex in [a; b]. Show that there exists a sequence of C1 convex
functions converging uniformly to f .

Let g(x) =

8<: f 0(x+) if a � x < b
f 0(b�) if b � x <1
f 0(a+) if x < a

. Replacing f by f(x)�f 0(a+)x we may

suppose f 0(a+) = 0: Note that g is a bounded increasing function on R. Let

�(x) = f(a)+

xZ
�1

g(t)dt. Then � is convex on R and j�(x)j � a+� jxj (x 2 R) for

some �; � > 0. Let �n(x) =
p

n
2�

R
�(x�y)e�n

2 y
2

dy. Clearly, �n is well de�ned

and convex on R. We have j�n(x)� �(x)j �
p

n
2�

R
j�(x� y)� �(x)j e�n

2 y
2

dy.
Let " > 0. Since � is (Lipschitz, hence) uniformly continuous we can �nd � > 0

such that j�(x� y)� �(x)j < " if jyj < �. Hence
p

n
2�

Z
fjyj<�g

j�(x� y)� �(x)j e�n
2 y

2

dy <

". Now
p

n
2�

Z
fjyj��g

j�(x� y)� �(x)j e�n
2 y

2

dy �
p

n
2�

Z
fjyj��g

[a + � jxj + a +

� jx� yj]e�n
2 y

2

dy

�
p

n
2�

Z
fjyj��g

[a1+�1 jyj]e�
n
2 y

2

dy for some �nite constants if x 2 [a; b]. Since

p
n
2�

Z
fjyj��g

[a1 + �1 jyj]e�
n
2 y

2

dy =
q

1
2�

Z
fjuj�

p
n�g

[a1 + �1

��� upn ���]e� 1
2u

2

du ! 0

as n ! 1 we see that �n ! � uniformly on [a; b]. But � = f on [a; b].
Hence, it remains only to show that each �n is a C

1 function. Note that
�n(x) =

p
n
2�

R
�(y)e�

n
2 (x�y)

2

dy. Repeated use of DCT together with the esti-
mate j�(x)j � a+ � jxj shows that �n is indeed a C1 function.

Problem 603.

In previous problem show that �0ns can be modi�ed to be a decreasing/increasing
sequence.

Given " > 0 there exist a C1 convex functions  n such that jf(x)�  n(x)j <

"=2n 8x 2 [a; b];8n. Let �n(x) =  n(x) + "n where "1 =
1X
j=1

 n �  n+1 and
"n � "n+1 =

 n �  n+1 < 2"
2n+1 ( the norm is, of course, the supremum

norm). Then f"ng strictly decreases to 0. Clearly, �n is convex and C1. Also
�n ! f uniformly and �n+1 =  n+1 + "n �

 n �  n+1 �  n + "n = �n so
f�ng decreases to f uniformly. A similar argument can be given to produce C1
convex functions increasing uniformly to f:
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Problem 604

Give an example of a sequence of Lipschitz functions on [0; 1] converging
uniformly whose limit is not Lipschitz.

fn(x) = minfnx;
p
xg with limit

p
x.

Problem 605

Prove or disprove: if f; f1; f2; ::: are C1 functions on R with compact support
and fn ! f uniformly on R then fn ! f in L1(R).

False: there exist C1 functions fn with compact support such that fn = 1
n

for �n � x � n and 0 � fn(x) � 1
n 8n;8x. Clearly, fn ! 0 uniformly andZ

jfn � 0j �
nZ

�n

fn =
2n
n = 2.

Problem 606
Prove the following:
a) If � is a positive �nite measure, f is a complex valued integrable function

on R with
��R fd��� = R

jf j d� then there exists a real constant a and a non-
negative L1(�) function g such that f = eiag a.e. [�].
b) If � is a complex Borel measure on R; f is a complex valued integrable

function on R with
��R fd��� = R jf j d j�j then there exists a real constant a such

that f� = eia jf j a.e. [j�j] where � = d�
dj�j .

c) If � is a complex Borel measure on R with
��R fd��� = R jf j d j�j for every

f 2 Cc(R) then � = c�� for some real number � and some c 2 S1.

a) Let
R
fd� = reia with r � 0 and a real. Then

R
jf j d� = r =

R
e�iafd�

so
R
fjf j �Re e�iafgd� = 0. Since jf j �Re e�iaf � 0 we get jf j �Re e�iaf = 0

a.e. [�]. This implies Im e�iaf = 0 a.e. [�] and hence f = eia jf j a.e. [�].
b). We have

��R f�d��� = R jf j d� where � = j�j. By part a) and the fact that
j�j = 1 a.e. [�] we get f� = eiag and g = jf j necessarily so f� = eia jf j a.e. [�].
c) Since Cc(R) is dense in L1(j�j) the equation

��R fd��� = R
jf j d j�j holds

for every f 2 L1(j�j). Taking f = 1 we get (from part b)) � = eia a.e. [�].
It follows that d� = cd j�j where c = eia. We now have

��R fd��� = R jf j d� for
every f 2 L1(�) and, by part a), f = eia jf j a.e. [�] for every f 2 L1(�) (the
real constant a possibly depending on f). Let A and B be disjoint Borel sets.
Taking f to be IA � IB we get �(A) = 0 or �(B) = 0. The only positive �nite
Borel measures � on R such that �(A) = 0 or �(B) = 0 whenever A and B
are disjoint Borel sets are the degenerate measures: for each positive integer n
there is a unique integer in such that �([ in�12n ; in2n )) > 0. Since [ in�12n ; in2n ) and
[ in+1�12n+1 ; in+12n+1 ) must intersect we must have [

in+1�1
2n+1 ; in+12n+1 ) � [

in�1
2n ; in2n ). Hence
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the intervals [ in�12n ; in2n ]; n = 1; 2; ::: form a decreasing sequence of closed sets
with diameters tending to 0. If � is their common point then � = �� because
any point x 6= � belongs to a dyadic interval I with �(I) = 0. We have proved
that � = c�� where jcj = 1 and � is real.

Problem 607

Let fn : [0; 2�] ! R satisfy the inequalities jfn(x)� fn(y)j � M jx� yj

8x; y 2 [0; 2�];8n with M independent of n. Show that

2�Z
0

fn(x)fsinnxgdx! 0

as n!1. If ffng is uniformly bounded prove that
2�Z
0

�(x)fn(x)fsinnxgdx! 0

as n!1 for every � 2 L1([0; 2�]):

Each fn is absolutely continuous, hence di¤erentiable a.e.. Let gn(x) =
fn(x) cos(nx)

2�n . Then gn is absolutely continuous ( because product of two ab-
solutely continuous functions on [0; 2�] is absolutely continuous). Hence 0 =

gn(2�)� gn(0) =

2�Z
0

g0n(t)dt =

2�Z
0

f 0n(t) cos(nt)�nfn(t) sin(nt)
2�n dt. Note that jf 0nj �M

a.e. by hypothesis and hence

2�Z
0

f 0n(t) cos(nt)
2�n dt! 0. It follows that

2�Z
0

nfn(t) sin(nt)
2�n dt!

0, as required. For the second part let " > 0 and choose a continuously di¤eren-

tiable fucntion  such that
R
j��  j < ". Then

������
2�Z
0

�(x)fn(x)fsinnxgdx�
2�Z
0

 (x)fn(x)fsinnxgdx

������ �
" sup kfnk1. Since j (x)fn(x)�  (y)fn(y)j � j (x)fn(x)�  (y)fn(x)j+j (y)fn(x)�  (y)fn(y)j �
M1 jx� yj 8x; y 2 [0; 2�];8n withM1independent of n (M1 = f(sup kfnk1)

 01+
k k1gM will do) we can apply the �rst case with ffng replaced by f fng

to

2�Z
0

 (x)fn(x)fsinnxgdx ! 0. It follows that

������
2�Z
0

�(x)fn(x)fsinnxgdx

������ <
" sup kfnk1 +

������
2�Z
0

 (x)fn(x)fsinnxgdx

������ < "(1 + sup kfnk1) for n su¢ cently

large.

Alternative proof of the �rst part: by Arzela - Ascoli Theorem there is
a subsequence ffkjg of ffkg converging uniformly to a continuous function

f . Now

������
2�Z
0

fkj (x)fsin kjxgdx�
2�Z
0

f(x)fsin kjxgdx

������ ! 0 as j ! 1. Since
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2�Z
0

f(x)fsin kjxgdx ! 0 too we conclude that

2�Z
0

fkj (x)fsin kjxgdx ! 0. Ar-

guing with subsequences we conclude that

2�Z
0

fn(x)fsinnxgdx! 0 as n!1.

Problem 608

Let f : R ! R be a bounded function. If Gf is closed show that f is
continuous. More generally show that if f : R ! R has closed graph then f
is continuous at x if and only if it is bounded in some neighbourhood of x.
Conclude that the set of points of continuity of a function with closed graph is
necessarily open.

Remark: in general the set of points of continuity of any function f : R! R
is a G�.

First part: if it is not true that lim
y!x

f(y) = f(x) then there exists a sequence

fxng converging to x such that ff(xn)g does not converge to f(x) and hence
there is a limit point y of this sequence with y 6= f(x). Let

f(xnk) ! y. Since f(xnk ; f(xnk)g � Gf and f(xnk ; f(xnk)g ! (x; y) in

R2 we must have y = f(x), a contradiction. For the second part repeat above
argumet under the assumtion that f is bounded in some neighborhood of x.
The last part is obvious.

Problem 609

Show that there is a function f : R ! R which has closed graph and un-
countably many discontinuities.

Remark: such a function cannot be bounded by Problem 608.

Let C be the Cantor set, f(x) =
� 1

d(x;C) if x =2 C
0 if x 2 C . If xn ! x and f(xn)!

y with xn =2 C 8n then 1
d(xn;C)

! y and hence fd(xn; C)g does not tend to
0. Since d(xn; C) ! d(x;C) this implies x =2 C. Hence 1

d(xn;C)
! 1

d(x;C)

and so y = lim f(xn) = lim 1
d(xn;C)

= 1
d(x;C) = f(x). If xn 2 C 8n then

y = lim f(xn) = 0; x 2 C and f(x) = 0 so y = f(x). Either xn =2 C along a
subsequence or xn 2 C along a subsequence. It follows that y = f(x) in all
cases, so Gf is closed. Claim: f is not continuous at any point of C: if x 2 C
there is a sequence fxng in RnC converging to x. If f is continuous at x then

1
d(xn;C)

! 0 and d(xn; C)!1 which is absurd.

291



Problem 610
Show that if a function f : R ! R has closed graph then the points of

discontinuity is a closed set with empty interior; conversely any closed set with
empty interior is the set of discontinuity points of a function with closed graph.
Remark: if f : R ! R has closed graph then it has at least one point of

continuity since the set points of discontinuity cannot be R.

The second part follows by replacing the Cantor set C in previous problem
by the given closed set with empty interior. For the �rst part note that the set
D of discontinuity points is closed by the last part of Problem 608. It remains
to show that D has no interior. Suppose a < b and [a; b] � D. Then [a; b] �[
n

fx 2 [a; b] : jf(x)j � ng. Claim:fx 2 [a; b] : jf(x)j � ng is closed for each n.

Indeed, if jf(xk)j � n and xk ! x then, for any limit point y of ff(xk)g there is
a subsequence ff(xkj )g converging to y. Since Gf is closed we get (x; y) 2 Gf
so y = f(x). We have proved that f(xk) ! f(x) so jf(x)j � n, proving the
claim. By Baire Category Theorem we conclude that fx 2 [a; b] : jf(x)j � ng
has non-empty interior for some n. But then f is continuous at any point of the
interior ( because f is bounded in a neighbourhood of such a point; see second
part of Problem 608). We have arrived at a contradiction since [a; b] � D. The
proof is complete.

Problem 611

Give an example of a � - �nite Borel measure � on R such that �([a; b]) =1
whenever a < b.

Let frng be an enumeration of rationals, f(x) = 1p
x
I(0;1)(x) and g(x) =

1X
n=1

1
2n f(x + rn). Note that

Z 1X
n=1

1
2n f(x + rn)dx =

1X
n=1

1
2n

Z
f(x + rn)dx =

1X
n=1

1
2n�1 < 1 and hence g(x) < 1 a.e.. Let �(E) =

Z
E

g2(x)dx. Since �fx :

jxj � n; g(x) � ng <1 8n it follows that � is �� �nite. If a < b then �([a; b]) =
bZ
a

(
1X
n=1

1
2n f(x + rn))

2dx � 1
2n

bZ
a

(f(x + rn))
2dx = 1

2n

bZ
a

1
x+rn

I0<x+rn<1(x)dx =

1
2n

b+rnZ
a+rn

1
y I0<y<1(x)dy = 1 if n is chosen such that a + rn < 0 < b + rn or

rn 2 (�b;�a).

Problem 612

Let f : R! C be mesurable and bounded on compact sets with f(x+ y) =
f(x)f(y) 8x; y and assume that f is not identically 0. Prove that f(x) � e�x for
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some complex number �. If f is bounded show that f necessarily take values
in S1 and f(x) � ei�x for some real number �. Conclude that if f : S1 ! S1 is
a mesurable homomorphism then f(x) � zn for some integer n:

[See also Problem 280 and Problem 613]

Let g(x) =

xZ
0

f(t)dt. Then g(x + y) � g(x) =

x+yZ
x

f(t)dt =

yZ
0

f(s + x)ds =

f(x)

yZ
0

f(s)ds = f(x)g(y). If g(y) 6= 0 this gives f(x) = g(x+y)�g(x)
g(y) 8x. Since

g is absolutely continuous on �nite intervals so is f by this formula. [ g � 0
implies f � 0]. In particular g is continuously di¤erentiable and so is f by
above formula. Now f 0(x + y) = f(x)f 0(y). Put y = 0 and solve the equation
f 0(x) = f(x)f 0(0) to get f(x) = ef

0(0)x. [ f2(0) = f(0) so f(0) = 0 or 1. If
f(0) = 0 then f(x) = f(0)f(x) = 0 8x so f(0) must be 1]. We have proved the
�rst part with � = f 0(0). Suppose f is also bounded. Since je�xj = e(Re�)x we
must have Re� = 0 proving that f(x) � ei�x for some real number �. Finally if
f : S1 ! S1 is a mesurable homomorphism and h(t) = f(ei2�t) then h(t) � ei�t

for some real number � so f(e2�it) = ei�t. The fact that f(1) = 1 forces h(1)
to be 1 and hence �=2� is an integer n. Hence f(z) = zn.

Problem 613

Let f : R ! C be mesurable with f(x + y) = f(x)f(y) 8x; y and assume
that f is not identically 0. Prove that f(x) � e�x for some complex number
�. Prove that all measurable homomorphisms of S1 are of the type z ! zn for
some integer n:
[ Local boundedness has been dropped from Problem 612].

Let f : R ! C be mesurable with f(x + y) = f(x)f(y) 8x; y and assume
that f is not identically 0. Let �(x) = jf(x)j. If f(x) = 0 for some x then
f(y) = f(x)f(y � x) = 0 8y so �(x) > 0 for all x. Now log �(x) is an additive
measurable map of R into itself and hence log �(t) � ct for some real number
c. Now consider the function f1(t) =

f(t)
�(t) . Problem 612 can be applied to

this function and we get f1(t) = ei�t for some real number �. Thus f(t) =
f1(t)�(t) = ei�t+ct. The second part is proved as in Problem612.

Problem 614

Prove Vitali - Hahn - Saks Theorem: if f�ng is a sequence of complex
measures on (
;F) and �(A) � lim

n!1
�n(A) exists for each A 2 F then � is a

complex measure.

Remark: Problem 335 shows that the result fails of we replace complex
measures by positive measures.
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Let �(A) =
1X
n=1

j�nj(A)
2nf1+j�nj(
)g

. Then � is a positive �nite measure and each

�n is absolutely continuous w.r.t. �. Let S be the set of all f0; 1g valued
functions in L1(�) : S = fIA : A 2 Fg. Then S is closed in L1 and hence it is a

complete metric space. Let " > 0. Then S =
1[
k=1

\
n;m�k

fIA : j�n(A)� �m(A)j �

"g. By Baire Category Theorem there exists k 2 N; A 2 F and r > 0 such
that kIB � IAk1 < r implies j�n(B)� �m(B)j � " whenever n;m � k. Hence
kIB � IAk1 < r implies j�n(B)� �(B)j � " whenever n � k. If �(E) < r then
kIA[E � IAk1 < r and

IAnE � IA1 < r. Hence j�n(A [ E)� �(A [ E)j � "
and j�n(AnE)� �(AnE)j � " whenever n � k. Since �(E) = �(A[E)��(AnE)
and �n(E) = �n(A [ E) � �n(AnE) we get j�n(E)� �(E)j � 2" whenever
n � k. In particular this holds for n = k and the fact that �k << � shows that
�(E)! 0 as �(E)! 0. It follows easily from this that � is countably additive.

Problem 615

Let an > 0 8n. Show that if
1X
n=1

an sinnx is a Fourier series the
1X
n=1

an
n <1.

Suppose there is a function f in L1[0; 2�] such that
1X
n=1

an sinnx is the

Fourier series of f . Since sinnx = einx�e�inx
2i we get f̂(n) = an

2i if n � 1; f̂(n) =

�a�n
2i if n � �1 and 0 if n = 0. Let g(x) =

xZ
0

f(t)dt. Then ĝ(n) = �an
2n if

n � 1; ĝ(n) = a�n
2n if n � �1: Let fFNg be the Fejer sequence. Then FN �g ! g

uniformly by Fejer�s Theorem. In particular this gives
NX

n=�N
(1 � jnj

N+1 )ĝ(n) !

g(0) from which the conclusion follows easily.

Problem 616

If f is upper semi-continuous on a complete metric space X show that it is
continuous at all points except those on a set of �rst category.

Let " > 0 and A" = fx : there exists sequences fxng; fyng converging to x
with f(xn)� f(yn) > " 8ng. [ A" is the set of points at which the oscillation of
f exceeds "].
We claim that each A" is a closed set with empty interior and f is continuous

on the complement of
1[
n=1

A1=n. Let fujg � A" and uj ! u. If u =2 A" then

there is a ball B(u; �) such that f(x) � f(y) � " 8x; y 2 B(u; �). If j is so
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large that d(uj ; u) < �=2 then uj 2 A" and hence there exist �; � such that
d(�; uj) < �=2; d(�; uj) < �=2 and f(�) � f(�) > ". This is a contradiction
because �; � 2 B(u; �). Hence A" is closed. If possible let A" have an interior
point u. Since f is upper semi-continuous f(w) < f(u) + "

2 whenever d(w; u)
is su¢ ciently small. Let fxng; fyng converge to u with f(xn) � f(yn) > " 8n.
But then f(yn) < f(xn) � " < f(u) � "=2 for n su¢ ciently large. This proves
that there are points z in the interior of A" which are arbitrarily close to u
satisfying the inequality f(z) < f(u) � "=2. Repeating this argument we get
points z1; z2; ::: such that f(zn) < f(u)� n"

2 . This would be a contradiction if f
is bounded below. In particular we have proved that the upper semi-continuous

function ef is continuous. Hence f itself is continuous. Finally if x =2
1[
n=1

A1=n

then for any N; f(v) � f(u) � 1
N whenever u and v are su¢ ciently close to x

proving that f is continuous at x.

Problem 617

Let C be an unbounded convex set in Rk. Show that C contains a ray, i.e.
it contains fa+ tx : t � 0g for some a; x 2 Rk; x 6= 0.

The proof can be reduced to the case when C has non-empty interior and
then to the case 0 2 C0. Let kxnk ! 1; fxng � C. Let 1

kxnjk
xnj ! x. Let

t > 0. We complete the proof by showing that tx 2 C. We have tx = 1
2 (yj +

(2tx�yj)) where yj = 2t

kxnjk
xnj . Note that yj ! 2tx as j !1 so yj�2tx 2 C

whenever is j su¢ ciently large. Also yj = 2t

kxnjk
xnj + (1 � 2t

kxnjk
)0 2 C if

2t

kxnjk
< 1 which is true whenever is j su¢ ciently large.

Problem 618

Find all complex Borel measures � on [0; 1] such that f !
Z
fd� is a

homomorphism on the alegbra C[0; 1]

( i.e.
Z
fd�

Z
gd� =

Z
fgd� 8f; g 2 C[0; 1]). Find all complex Borel mea-

sures � on [0; 1] such that
Z
fd� 6= 0 whenever f : [0; 1]! Cnf0g is continuous

and �([0; 1]) = 1.

If C � C[0; 1] is closed then there exist continuous functions fn : [0; 1] !
[0; 1] such that fn = 1 on C and fn(x) = 0 if d(x;C) � 1

n . Since fn ! IC

pointwise and
Z
fnd�

Z
fnd� =

Z
f2nd� 8n we get �2(C) = �(C) for every

closed set C. Regularity of � implies that the same equation holds for all Borel
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sets C.In particular �(E) = 0 or 1 for every Borel set E. Assume that � is not the
zero measure. For each n there is a unique jn such that �([

jn�1
n ; jnn ]) = 1. Now\

n

[ jn�1n ; jnn ] is a singleton fcg and �fcg = 1 which implies � = �c. Conversely,Z
fd�

Z
gd� =

Z
fgd� 8f; g 2 C[0; 1] if � = �c for some c. By the theorem

of Gleason, Kahane and Zelazko ( see Theorem 10.9 of Functional Analysis by
Rudin) the answer to the second part is the same.

Problem 619

If X is an integrable random variable on a probability space (
;F ; P ) and
G � F is a sigma algebra such that X and E(XjG) have the same distribution
show that E(XjG) = X almost surely.
Remark: the conclusion says that X is measurable w.r.t. G ( rather its

completion). Thus E(XjG) and X have di¤erent distribution unless there is no
real conditioning involved!

Let �(x) =
�

x� 1 + e�x if x � 0
�x� 1 + ex if x < 0 . Then �

0(x) is strictly increasing on R.

Hence �(y) � �(x) +�0(x)(y� x) 8x; y and strict inequality holds if x 6= y. [ If,
for example, y > x then �(y)��(x)

y�x > �0(x) because �(y)��(x)y�x = �0(t) for some t 2
(x; y) and �0(t) > �0(x)]. Note that j�(x)j � 2+ jxj 8x so �(X) is integrable and
also that �0 is bounded. Also, �(X) � �(E(XjG)) + �0(E(XjG))fX �E(XjG)g
with strict inequality except when X = E(XjG). However the two sides of the
inequality have the same mean because �(E(XjG)) has the same distribution
as �(X). It follows that equality holds almost surely and hence X = E(XjG)
almost surely.

Problem 620

If E(XnjG) ! 0 a.s. and each Xn is a non-negative random varable show
that Xn ! 0 in probability.

Let Yn = minfXn; 1g. Then E(YnjG) � E(XnjG)! 0 abd 0 � E(YnjG) � 1
so E(E(YnjG)) ! 0 or EYn ! 0. Hence Yn ! 0 in probabiliy. For 0 < " < 1,
Xn > " implies Yn > " so fXng ! 0 in probability.

Problem 621

Suppose E(XjY ) = EX. Does it follow that X and Y are independent?

No. If Y = IA � IB and
Z
A

XdP =

Z
B

XdP =

Z
XdP = 0 then E(XjY ) =

EX. However X and Y need not be independent. [ On [0; 1] with Lebesgue
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mesure let X = IE�IF +IG�IH where E = (0; 18 ); F = I( 18 ;
1
4 )
; G = I( 68 ;

7
8 )
;H =

I( 78 ;1) and Y = I(0; 14 ) � I( 34 ;1). Note that PfX = 1; Y = 1g 6= PfX = 1gPfY =
1g].

Problem 622

There exist sequences fang; fbng � (0;1) such that an+1 < an; bn+1 < b

8n;
1X
n=1

an =1;
1X
n=1

bn =1 but
1X
n=1

minfan; bng <1.

We shall construct positive integers kN (N � 1) and positive numbers a0ns
and b0ns with the following properties: aj and bj are independent of N , a1 >

a2 > ::: > akN ; b1 > b2 > ::: > bkN ;

kNX
j=1

aj � N;

kNX
j=1

bj � N; aj � 1
j (1 � j �

kN ); bj � 1
j (1 � j � kN ) and minfaj ; bjg � 1

j2 (1 � j � kN ).

Of course fang and fbng would then satisfy our requirements. We start
with a1 = b1 = k1 = 1. Suppose we have constructed k1; :::; kN ; aj(j � kN ) and
bj(j � kN ). We use the following steps to construct kN+1 and aj ; bj(kN < j �
kN+1).

Step 1: pick l > maxf( 1
akN

� 1); kN ; ( 1p
bkN

� 1)g.

Step 2: pick a positive integer r such that
rX
�=1

1
�+l � N + 1.

Step 3: pick a positive integer m such that m > maxf
p
l + r�1); f(l+r)2�

1g; kN + rg.

Step 4: pick a positive integer s such that
sX
�=1

1
�+m � N + 1.

Let kN+1 = kN + r + s.

Let akN+j =
1
l+j if 1 � j � r; akN+j+p = ( 1

m+p )
2 if 1 � p � s; bkN+j =

( 1
l+j )

2 if 1 � j � r; bkN+j+p =
1

m+p ; if 1 � p � s.

Remark: if we drop the requirement that fang and fbng are decreasing
sequences the solution becomes trivial: let an = 1

n2 or
1
n according as n is even

or odd and bn = 1
n or

1
n2 according as n is even or odd.

Problem 623

Let t; t1; t2; ::: 2 R. Show that tn ! t if and only if f̂(tn)! f̂(t) 8f 2 L1(R).
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�only if�part is by continuity of the Fourier transform. For the �if�part let
f(x) = eiaxe�x

2=2 (where a is a real number) to conclude that eiatne�t
2
n=2 !

eiate�t
2=2. This implies e�t

2
n=2 ! e�t

2=2 and eiatn ! eiat. Also eiatne�t
2
n=2 !

eiate�t
2=2 implies that ftng is bounded. It follows from eiatn ! eiat that t is

the only limit point of ftng.

Problem 624

If � is a complex Borel measure on a locally compact Hausdor¤ space X
such that k�k = �(X) show that � is a positive measure.

Let � = j�j and � = d�
d� . Then j�j = 1 a.e. [�] and

Z
�d� = �(X) = k�k =

�(X). Hence �(X) = Re
Z
�d� =

Z
Re�d� �

Z
1d� = �(X). Hence Re� = 1

a.e. [�]. Since j�j = 1 a.e. [�] this implies � = 1 a.e. [�] so � = �.

Problem 625

Prove that ff̂ : f 2 L1(R)g = fg � h : g; h 2 L2(R)g.

Remark: if g; h 2 L2(R) then g � h is well-de�ned by Holder�s inequality.
Above statement implies that it is continuous and vanishes at �1.

Let f 2 L1(R). There exist functions f1; f2 in L2(R) such that f = f1f2.
There exist functions �1; �2 in L

2(R) such that f1 = �̂1; f2 = �̂2. Let g(x) =
�1(�x) and h(x) = �2(�x). Then (g � h)^(t) = ĝ(t)ĥ(t) = �̂1(�t)�̂2(�t) =
f1(�t)f2(�t) = f(�t). Taking Fourier transforms we get (g�h)(�x) = f̂(�x) so
f̂ = g � h. Conversely, if g; h 2 L2(R) then g = ĝ1; h = ĥ1 for some g1; h1L2(R).

Let f = g1h1. Then f 2 L1(R) and (g � h)^(x) = ĝ(x)ĥ(x) = f(�x) = f^^(x)

and hence g � h = f̂ .

Problem 626

Let (
;F ; P ) be a probability space, G be a sub-sigma �eld of F , and let
X and Y be two random vriables on (
;F ; P ). Suppose suppose there is a set
E 2 F such that P (E) = 1 and P (X�1(A)jG)(!) = IA(Y (!)) for every Borel
set A whenever ! 2 E. Prove that X = Y a.s. and that X is measurable w.r.t
the P� completion of G.

We prove that PfX�1(A)\Y �1(Ac)g = 0 for any Borel set A. This implies
that X = Y a.s. and hence that P (X�1(A)jG) = IA(X) a.s. which implies
X�1(A) 2 G for each A if G is complete w.r.t. P . The hypothesis implies that
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Y �1(Ac) = (Y �1(A))c 2 G and hence
Z

Y �1(Ac)

P (X�1(A)jG)dP = PfX�1(A) \

Y �1(Ac)g. But the left side of this equation is
Z

Y �1(Ac)

IA(Y )dP = PfY �1(A)\

Y �1(Ac)g = 0. [ We used the fact that if � is a probability measure on R2 such
that �(A � Ac) = 0 8A Borel in R then �(�) = 1, where � is the diagonal:
� = f(x:x) : x 2 R2g. Indeed �c is the union of the sets (�1; r) � (�1; r)c
and (r;1))� (r;1)c as r varies over Q].

Problem 627

Let Xn ! 0 a.s. and assume that pfXn = 0g = 0 for each n. Show that
there exists a measurable function f : R! (0;1) such that

X
f(Xn) <1 a.s.

Let Yj be the number of positive integers n for which 1
j � jXnj < 1

j�1 . [
De�ne Yj(!) to be 0 if Xn(!) 9 0]. Then Yj is a positive random variable

for each j. Claim: there exists aj > 0 (j = 1; 2; : : :) such that
X
j

ajYj < 1

a.s.. To see this just choose aj such that PfajYj > 1
j2 g <

1
j2 and note thatX

j

PfajYj > 1
j2 g <1 which implies ajYj � 1

j2 eventually, with probability 1.

The claim is proved. Now let f(x) = aj on fx : 1j � jxj < 1
j+1g, j = 2; 3; : : :.

[ we can take f to be 1 on fx : 1
2 � jxj < 1g [ f0g]. Then

X
f(Xn) =X

j

X
1
j�jXnj< 1

j�1

aj =
X
j

ajYj <1 a.s..

Problem 628

Call a subset A of R nicely covered (nc) if there is a sequence of open sets
fUng such that A � Un for each n and any open set V that contains A necessarily
contains some Un. Show that A is nc if and only if it is the union of a compact
set and an open set

If A = K [ U where K is compact and U is open let Un = fx : d(x;K) <
1
ng [ U . Then Un is open, contains A and if V is an open set with A � V then
K � V and U � V . It follows that fx : d(x;K) < 1

ng � V for some n and
Un � V for that n. Hence A is nc. Coversely suppose A is nc. If we show
that AnA0 is compact the proof would be complete because A = A0 [ (AnA0).
Suppose AnA0 is not compact. Let fxng be a sequence in AnA0 which has no
limit point in AnA0. If fxng has a limit point, say x, in A then x =2 AnA0
so x 2 A0. But then xn 2 A0 for n su¢ ciently large which is a contradiction.
Hence fxng has no limit point in A. By hypothesis there is a sequence of open
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sets fUng such that A � Un for each n and any open set V that contains A
necessarily contains some Un. There exists yn 2 UnnA such that d(xn; yn) < 1

n .
[ This is becase xn 2 @A \ Un]. Let V = �Bc where B = fy1; y2; : : :g. Note
that V is open and A � V . This is because any limit point of fyng is also a
limit point of fxng and hence it does not belong to A. proving that �B � Ac or
A � V ]. It follows that Un � V for some n. However yn 2 Un but yn =2 V . This
completes the proof.
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